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Abstract
In this paper we construct an uncountable union of line segments T which has

full intersection with the sets ({0 }× [0,1]) � ({1 }× [0,1]) � R2 but has null two-
dimensional measure. Further results are proved on the decay rate of µ(T) if the line
segments comprising T are replaced with increasingly fine approximations by parallel-
ograms.

1. Introduction
In1, Kaczynski proves a variety of results placing restrictions on possible boundary

functions of a half-plane function with some property. The last result is different; he
constructs a measurable half plane function f with a nonmeasurable boundary function.
Crucial to this construction is a measure theoretic generalization of the trapezoid
formula which we document here. For the remainder of the paper, let X0 = {(x,y) : y
= 0} and X1 = {(x,y) : y = 1}, let µ refer to Lebesgue measure in the contextually
obvious dimension (we will distinguish µ1 and µ2 to refer to one and two-dimensional
Lebesgue measure respectively when necessary), and let µ∗ refer to outer measure.

Definition 1 A trapezoid T = �� is a disjoint union of line segments with each
segment having its two endpoints on X0 and X1 (i.e. � = {((1 − t)x0 + tx1,t) : t �
[0,1]}).
If T is a trapezoid, let T0 = T � X0 and T1 = T � X1. In2, Kaczynski proved

the following result:

1 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
2 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
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Theorem 1 If T is a trapezoid, then .
This theorem was used to construct a collection of non-intersecting paths (not lines)

γx corresponding to each point x � [0,1] such that for each path limt→0 γx(t) = (x,0)
but the union satisfies
This construction immediately leads to the creation of a measurable half plane

function with non-measurable boundary function3. We depict the situation in Figure
1.
One may wonder the extent to which this result holds if we omit the restriction

that the lines of a trapezoid are not disjoint. To this end, we amend the trapezoid
definition:

Definition 2 An unrestricted trapezoid T =�� is a union (not necessarily disjoint)
of line segments with each segment having its two endpoints on X0 and X1 (i.e. � =
{((1 − t)x0 + tx1,t) : t � [0,1]}).
In4, Kaczynski proves that there is no sensible upper bound in terms of µ1(T0) and

µ1(T1) on the two dimensional measure of an unrestricted trapezoid.
Theorem 2 There exists an unrestricted trapezoid T with µ1(T0) = µ1(T1) = 0

and µ2(T) = �.
Proof: Let M be a residual set of measure zero (e.x. let xk be an enumeration of

rationals and M =
). For any point (x,y) (y � (0,1)) and line � passing through (x,y)
with angle θ with the x-axis, let F0(θ) = (x − y cot(θ),0) and F1(θ) = (x + (1 −

y)cot(θ),1) denote the intersections � � X0 and � � X1 respectively. F0 and F1 are
homeomorphisms from (0,π) onto X0 and X1 respectively, so) are both residual sets
of measure zero. Since the intersection of residual

Figure 1: Plot of �γx for x � [0,1] where γx1 � γx2 = �, limt→0 γx(t) = (x,0), but
= 0. Given a nonmeasurable function φ(x), if we define f : (R × (0,�)) → R as f (γx)
= φ(x) and vanishing elsewhere, then f is measurable in the upper half plane but has
a nonmeasurable boundary function φ.
sets is nonempty, for every (x,y) with y � (0,1) we can choose an angle) such that

the line � intersecting (x,y) with angle α intersects X0 �M and X1 �M. Let the
unrestricted trapezoid T be the union of all such lines so that µ1(T0) = µ1(T1) =
µ1(M) = 0 and µ2(T) = µ2({(x,y),y � (0,1)}) = �. �.

2. No lower bound
In5, Kaczynski poses the opposite question as an open problem, asking if there is

a lower bound on the twodimensional measure of an unrestricted trapezoid in terms

3 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
4 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
5 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
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of µ(T0) and µ(T1). We will prove the following theorem indicating no lower bound
exists:

Theorem 3 There exists an unrestricted trapezoid T with µ1(T0) = µ1(T1) = �
and µ2(T) = 0.
Since it suffices to find an unrestricted trapezoid with measure zero and sets µ(T0)

= µ(T1) = µ([0,1]) = 1, we can formulate the question a different way:
Proposition 1 There exists a bijection f : [0,1] → [0,1] such that, for the set

S = [ [ ((1 − t)x + tf (x),t),
t�[0,1] x�[0,1]
we have µ(S) = 0.
It is clear that Theorem 3 is a corollary of Proposition 1.
It is perhaps not immediate that such a function should exist. Any monotone f

induces a standard trapezoid which abides by Theorem 1. The choice f (x) = 1 −
x gives measure µ(S) = 1/2, and other decreasing functions cannot be massaged to
induce a smaller measure. We will instead draw inspiration

Figure 2: Examples of the fractal construction of an unrestricted trapezoid with null
measure. (Left) The base pattern induced by f1 (Right) Illustration of unrestricted
trapezoid induced by f.
from fractal geometry6; the particular iterative scheme we choose will create one-

dimensional slices in x similar to the Cantor middle third set. In Figure 2, the basic
pattern is represented by the piecewise function

otherwise we divide [0,1] into three subintervals and connect them via parallelo-
grams where f1 essentially swaps the second and the third. In this case, µ(S) = 5/6. In
each subsequent iteration we embed an affine transformed version of the base pattern
in each parallelogram, thus reducing the total measure of the unrestricted trapezoid
(we will prove this limits to zero as in Proposition 1).
Since this procedure iteratively divides subintervals of [0,1] in 3, it is perhaps not

surprising that this this sequence of functions {fk} has a natural representation on
base 3 fractions, namely

f k(0.x1x2x3„ ,) = 0.y1y2…ykxk+1xk+2…
where yj = 2xj (mod 3). Let f = limk→� fk such that for input x � [0,1], f

replaces every 1 in its base 3 expansion with a 2 and vice-versa. We will prove that
this function satisfies proposition 1. Before we prove proposition 1, we will state a
result from7 on modified Cantor sets: Proposition 2 Let Ct be a modified Cantor set
with representation

.
Then the following holds:
6 Kenneth J. Falconer. Techniques in fractal geometry, volume 3. Chichester: Wiley, 1997.
7 Richard Kenyon. Projecting the one-dimensional sierpinski gasket. Israel Journal of Mathematics,

97:221–238, 1997.
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in lowest terms, p + q � 0 (mod 3)
We are now ready to prove Proposition 1.
Proof of Proposition 1: Let us define f acting on base 3 fractions as
fk(0.x1x2x3„ ,) = 0.y1y2y3…
where yj = 2xj (mod 3). Then the linear combination (1 − t)x + tf (x) satisfies
.
Since St is just a scaled copy of C(2−t)/(1+t), by Proposition 2 we have the measure
in lowest terms, p + q � 0 (mod 3)
Since µ1(St) takes on nonzero value at only countably many t, the result follows

from Fubini’s theorem. �

3. Parallelogram formulation
Over 30 yeara after8, Kaczynski would outline a reformulation of the problem, offer-

ing three conjectures on the matter9. Rather than conceiving the unrestricted trapezoid
as a union of lines, Kaczynski considered unions of increasingly thinner parallelograms.

Definition 3 Let be a parallelogram with parallel sides [(j − 1)/n,j/n] × {0 } and
[(k − 1)/n,k/n] × {1 }. For σ � Sym(n), we say that the unrestricted trapezoid is
given by the union.
In this way, the unrestricted trapezoid associated with f1 above can be expressed

as.
The following conjectures center around properties of the smallest unrestricted

trapezoid of n parallelograms of width 1/n, namely
Conjecture 1 limn→� α(n) = 0.
Kaczynski claimed to have proved this. We will show that this follows from

Propoition 1 in the following section.
Conjecture 2 There exists constants c± > 0 such that .
Kaczynski claimed to be able to prove that c− exists and also claimed a weaker

upper bound in the form of α(n) < c+ (log(logn))2 /logn. We will prove a different
upper bound.

Conjecture 3 The sequence α(n) decreases monotonically.
This was left as an open problem in10.

8 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
9 Yahoo! News. The unabomber letters: A yahoo news special report, 2016.

https://www.yahoo.com/entertainment/the-unabomber-letters---a-yahoo-news-special-report-170846210.html.
10 Yahoo! News. The unabomber letters: A yahoo news special report, 2016.

https://www.yahoo.com/entertainment/the-unabomber-letters---a-yahoo-news-special-report-170846210.html.
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4. Proving the conjectures
To prove conjectures from the previous section, we first connect projections of the

Sierpinski gasket11 to our modified Cantor sets.
Definition 4 We define the Sierpinski gasket G � R2 as
.
We define the nth partial Sierpinski gasket Gn � G similarly. Let and let ∆(a,b,c)

be the area bounded by the triangle with vertices a,b,c � R2.

Let the projection operator projθ : R2 → R map points (x,y) � R2 onto a line
through the origin with angle θ to the x-axis such that projθ : (x,y) 7→ xcosθ + y
sinθ. We are interested in the sets projθ(Gn); more generally there is an active field of
research surrounding linear projections of fractals in R212. One of the major subjects
of interest is the following:

Definition 5 The Favard distance of a compact set E � R2 is given by
Fav
While it is perhaps obvious that Fav(G) = 0 from proposition 2, a result by Bond

and Volberg13 gives a decay bound on the Favard distances of partial Sierpinski gaskets.
Proposition 3 There exist constants C,p > 0 such that Fav(Gn) � Cn−p.
A later result by Bond and Volberg proves that p > 1/1414.
The rest of this section centers around utilizing proposition 3 to prove the conjec-

tures from section 3. To do this, we must compare projθ(Gn) to the modified Cantor
sets from Proposition 2 and the horizontal slices of the unrestricted trapezoid. Let us
define partial variants of these sets:

Definition 6 Let . If is the unrestricted trapezoid associated with the nth iteration
induced by swapping 1 � 2 in a base 3 expansion (i.e. if x − 1 = xnxn−1…x1 is an
n-digit base 3 number, then σ(x − 1) + 1 = ynyn−1…y1 where yk = 2xk (mod 3)),
then we write S(n)t = (R × {t}) � Tσ3n, the slice of, as

We similarly define the nth partial modified Cantor set as

This allows us to make the following comparison:
Lemma 1 For t � [0,1] and, we have

11 Richard Kenyon. Projecting the one-dimensional sierpinski gasket. Israel Journal of Mathematics,
97:221–238, 1997.

12 Izabella L aba. Recent progress on favard length estimates for planar cantor sets. In Operator-
Related Function Theory and Time-Frequency Analysis, pages 117–145. Cham: Springer International
Publishing.

13 Matthew Bond and Alexander Volberg. The power law for buffon’s needle landing near the
sierpinski gasket. arXiv preprint arXiv:0911.0233, 2009.

14 Matthew Bond and Alexander Volberg. Buffon needle lands in ϵ-neighborhood of a 1-dimensional
sierpinski gasket with probability at most |logϵ|−c. Comptes Rendus. Math´ematique, 348(11-12):653–
656, 2010.
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Proof: We can show that for t � 0 since

The result then follows from noticing that for, we have proj. �
Combining these results leads us to a similar polynomial bound on the decay of the

unrestricted trapezoids induced by the iterative scheme described in Definition 6.
Proposition 4 Let σ be the permutation on base 3 numbers as defined in Definition

6. Then there exist constants C,p > 0 such that .
Proof: By Fubini’s theorem, The measure of is given by integrating over the mea-

sures of the horizontal slices

From Lemma 1, this integral can be bound by an integral over projections of the
Sierpinski gasket:

By the change of variables θ = φ(t), we can write:
(projθ(Gn))dθ Placing an estimate on the trigonometric portion of the integral we

can write
(proj
Since Lebesgue measure is nonnegative, we can extend the limits of integration to

bound the measure of by a factor of the associated Favard distance
Fav(Gn)
Proposition 3 completes the proof. �
This result translates to a logarithmic bound on α(n) only for n = 3m where m �

N. If n has the base 3 representation n = xkxk−1…x0, we can define σn as in Figure
3 such that the first xk3k intervals map to xk copies of, the next xk−13k−1 intervals
map to xk−1 copies of, etc. Using this scheme, we can prove a weaker upper bound on
Conjecture 2 (consequently proving Conjecture 1 as well):

Theorem 4 There exist constants C,p > 0 such that α(n) < C/(logn)p.
Before proving this theorem, we supply a technical lemma:
Lemma 2 For p � (0,1), there exists a constant C such that

Proof: Let us make the change of variables t = 1 − x/n such that this integral can
be transformed into

For any constant C > 1, we can find t0 dependent only on C,p such that pt + 1 >
(1 − t)−p for t � (0,t0). This allows us to split the integral

Both of these integrals have closed form expressions, the leading asymptotic term
1/n arising from the left integral, thus completing the proof.�

Proof of Theorem 4: It is clear that. Let n = xkxk−1…x0 be a base 3 integer
representation. Then the following holds:

Figure 3: Examples of parallelogram-defined unrestricted trapezoids where σ is as
outlined in the proof of Theorem 4 (Left) n = 1000 which has base-3 representation
1101001 (Right) n = 2000 which has base-3 representation 2202002.
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Each digit must satisfy xj � 2, and by Proposition 4 there exist constants C,p > 0
such that, so we may write

Since the function f (x) = 3xx−p is increasing for x >p/log3(x), we can bound this
sum by the integral

By making the change of variables x = ulog3 e, we can write

The result follows from applying Lemma 2 and collecting constants. � 5 Applica-
tion to Cluster Sets
While Theorem 1 assisted in constructing a measurable half-plane function with

nonmeasurable boundary function in15, the open questions from16 and17 answered by
Propositions 1 and 4 were also initially conceived to address problems related to bound-
ary functions and cluster sets. We state the relevant material here for completeness.

Definition 7 Given a function defined on the open unit disk f : D → C and a
Jordan arc γ with an endpoint on the boundary of the disk, we say that C(f,γ) is the
cluster set of f on γ where

C(f,γ) = {w � C : �{zn} s.t. zn � γ,|limzn| = 1,limf (zn) = w}
Definition 8 Let γ1,γ2,γ3 � D be Jordan arcs with a similar endpoint z on the unit

circle. If, for a disk function f, the intersection satisfies C(f,γ1) � C(f,γ2) � C(f,γ3)
= �, then f has the three-arc property at z. If each γ1,γ2,γ3 is a union of rectilinear
segments, then we say f has the three-segment property at z.
In18, a version of conjecture 1 was suggested to assist in answering the following

open question from19 (presented as conjecture):
Conjecture 4 There exists a continuous function in D having the three-segment

property at each point of a set of positive measure or second category on |z| = 1.
Weaker versions of this conjecture have been proved. Jarn´ık20 gave an example of

a function having the three-segment property at uncountably many points. Piranian
was cited in21 as having proved the existence of a continuous disk function with the
three-arc (not segment) property. Bagemihl later proved the existence of a normal
meromorphic (not continuous) disk function with the three-segment property22.

15 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
16 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
17 Yahoo! News. The unabomber letters: A yahoo news special report, 2016.

https://www.yahoo.com/entertainment/the-unabomber-letters---a-yahoo-news-special-report-170846210.html.
18 Theodore John Kaczynski. Boundary Functions. PhD thesis, University of Michigan, 1967.
19 Frederick Bagemihl, George Piranian, and G. S. Young. Intersections of cluster sets. Bulletin of

the Polytechnic Institute of Ias,i, 5(9):29–34, 1959.
20 Vojtˇech Jarn´ık. Sur les fonctions de deux variables r´eelles. Fundamenta Mathematicae, 27:147–

150, 1936.
21 Frederick Bagemihl, George Piranian, and G. S. Young. Intersections of cluster sets. Bulletin of

the Polytechnic Institute of Ias,i, 5(9):29–34, 1959.
22 Frederick Bagemihl. The three-arc and three-separated-arc properties of meromorphic functions.

Nagoya Mathematical Journal, 53:137–140, 1974.
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