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Introduction by Jørgen Veisdal
The Mathematics of Ted Kaczynski
Disclaimer: As should be fairly evident, this essay is in no way meant to glorify

Ted Kaczynski. Rather, it was written with two goals in mind: 1. To orient to reality
some of the myths of Kaczynski’s ”genius” and 2. To illustrate yet another example of
a mathematician whose abstract endeavours ultimately defeated him.
Before terrorist Theodore John Kaczynski (1942-) began sending mail-bombs to

faculty members at various American universities, he had a promising career in math-
ematics. In particular, between 1964–69, he published a total of six single-authored
research papers in renowned mathematical journals, including The American Mathe-
matical Monthly and Proceedings of the American Mathematical Society.
The young Kaczynski did work in analysis, specifically geometric function theory

in the narrow subfield of boundary values of continuous functions. The purpose of this
article is to give an introduction to this work.

Education (1958–67)
Kaczynski grew up in Illinois, where he attended Sherman Elementary School and

Evergreen Park Central Junior High school. At the age of 10 years old, his IQ was
evaluated to be 167, and so he skipped the sixth grade (Chicago Tribune, 2017), an
event later described as pivotal to his development (Chase, 2004):

“Previously he had socialized with his peers and was even a leader, but
after skipping ahead he felt he did not fit in with the older children and
was bullied.”

Harvard University (1958–62)
Kaczynski entered Harvard University in 1958 at the age of 16 years old. A math-

ematical prodigy since he was a child, he was described by other undergraduates as
“shy”, “quiet” and “a loner” who “never talked to anyone“ (Song, 2012):

“He would just rush through the suite, go into his room, and slam the door
[…] When we would go into his room there would be piles of books and
uneaten sandwiches that would make the place smell”
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His personality notwithstanding, Kaczynski’s talent was however still recognized
among his Harvard peers, one of which in 2012 stated:

“It’s just an opinion — but Ted was brilliant […]. He could have become
one of the greatest mathematicians in the country”

Kaczynski graduated Harvard with a B.A. in mathematics in 1962. When he grad-
uated, his GPA was 3.12, scoring B’s in the History of Science, Humanities and Math,
C in History and A’s in Anthropology and Scandinavian (Stampfl, 2006).

University of Michigan (1962–67)
With an IQ of 167, Kaczynski had been expected to perform better at Harvard. After

graduating, he applied to the University of California at Berkeley, The University of
Chicago and the University of Michigan. Although accepted at all three, he ended up
choosing Michigan because the university offered him an annual grant of $2,310 and
a teaching post. The “darling of the math department”, he would graduate from the
University of Michigan in 1964 with a M.Sc. in mathematics and markedly improved
grades — 12 A’s and five B’s, which he himself later attributed to the standing of the
university:

“[My] memories of the University of Michigan are not pleasant […] The
fact that I not only passed my courses (except one physics course) but got
quite a few A’s shows how wretchedly low the standards were at Michigan”

Nonetheless, as the story goes, while there once a professor named George Piranian
told his students — including Kaczynski — about an unsolved problem in boundary
functions. Weeks later, Kaczynski came to his office with a 100-page correct, handwrit-
ten proof. Kaczynski graduated with a Ph.D. in mathematics in 1967. His dissertation,
entitled simply “Boundary Functions” regarded the same topic as his proof of Pira-
nian’s problem. His doctoral committee consisted of professors Allen L. Shields, Peter
L. Duren, Donald J. Livingstone, Maxwell O. Reade, Chia-Shun Yin. Every professor
approved it. His supervisor Shields later called his dissertation

“The best I have ever directed”

An additional testament to its quality was it being awarded the Sumner Myers Prize
for the best mathematics thesis of the university, accompanying a prize of $100 and a
plaque in the East Quad Residence Hall entrance listing his accomplishment. Of the
complexity (or perhaps narrow implications) of his dissertation, one of the members
of his dissertation committee, Maxwell Reade, said
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“I would guess that maybe 10 or 12 men in the country understood or
appreciated it”

Another, Peter Duren, stated

“He was really an unusual student”

Kaczynski at UCB in 1967 (Photo: Wikimedia Commons)

University of California, Berkeley (1967–69)
In late 1967, at 25 years old Kaczynski was hired as the youngest-ever assistant

professor of mathematics at the University of California at Berkeley. There, he taught
undergraduate courses in geometry and calculus, although with mediocre success. His
student evaluations suggest that he was not particularly well-liked because he taught
“straight from the textbook and refused to answer questions”.
He resigned on June 30th, 1969 without explanation.

Work (1964–69)

Wedderburn’s Theorem
Kaczynski’s only published paper relating to topics other than boundary functions

was his first journal paper, written before he started his Ph.D. It is entitled:

• Kaczynski, T.J. (1964). “Another proof of Wedderburn’s theorem”. The Amer-
ican Mathematical Monthly 71(6), pp. 652–653.

The paper concerned a 1905 result of Joseph H. M. Wedderburn that every finite
skew field is commutative. His paper provided a group-theoretic proof of the theorem,
which had previously been proved at least seven times.

Boundary Functions
Kaczynski’s Ph.D. dissertation concerned boundary values of continuous functions

and was entitled, simply

• Kaczynski, T.J. (1967). Boundary Functions. Ann Arbor: University of Michi-
gan.
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Let H denote the set of all points in the Euclidean plane having positive
y-coordinate, and let X denote the x-axis. If p is a point of X, then by an
arc at p we mean a simple arc γ, having one endpoint at p, such that γ =
{p} � H. Let f be a function mapping H into the Riemann sphere.

Boundary Functions By a boundary function for f we mean a function
φ defined on a set E � X such that for each p � E there exists an arc γ at
p for whichlim (s p, s � γ) f(z) = φ(p)

Kaczynski’s dissertation begins by re-proving a theorem of J. E. McMillan which
states that if f(H) is a a continuous function mapping H into the Riemann sphere, the
the set of curvilinear convergence of F (the largest set on which a boundary function
for f can be defined) is of a certain type. This proof also shows that if A is a set of the
same type in X, then there exists a bounded continuous complex-valued function in H
having A as its set of curvilinear convergence. The dissertation contains two additional
new proofs related to boundary functions, and a list of problems for future research.
Of the results, Professor Donald Rung later stated:

What Kaczynski did, greatly simplified, was determine the general rules for
the properties of sets of points of curvilinear convergence. Some of those
rules were not the sort of thing even a mathematician would expect.

Kaczynski would publish five journal papers related to the work from his dissertation
between 1965–69:

• Kaczynski, T.J. (1965). “Boundary functions for functions defined in a disk”.
Journal of Mathematics and Mechanics. 14(4), pp. 589–612.

• Kaczynski, T.J. (1966). “On a boundary property of continuous functions”.
Michigan Math. J. 13, pp. 313–320.

• Kaczynski, T.J. (1969). “The set of curvilinear convergence of a continuous
function defined in the interior of a cube”. Proceedings of the American Mathe-
matical Society 23(2), pp. 323–327.

• Kaczynski, T.J. (1969). “Boundary functions and sets of curvilinear conver-
gence for continuous functions”. Transactions of the American Mathematical So-
ciety. 141, pp. 107–125.

• Kaczynski, T.J. (1969). “Boundary functions for bounded harmonic functions”.
Transactions of the American Mathematical Society. 137, pp. 203–209.
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The Distributivity Problem
The only other trace of Kaczynski in a mathematical journal is two notes in the

American Monthly in 1964 and 65:

• Kaczynski, T.J. (1964). “Distributivity and (−1)x = −x (Advanced Problem
5210)”. The American Mathematical Monthly. 71(6), pp. 689.

• Kaczynski, T.J. (1965). “Distributivity and (−1)x = −x (Advanced Problem
5210, with Solution by Bilyeu, R.G.)”. The American Mathematical Monthly
72(6), pp. 677–678.

In the first note, Kaczynski proposes the following problem, concerning group the-
ory:

Let K be an algebraic system with two binary operations (one written
additively, the other multiplicatively), satisfying:1. K is an abelian group
under addition, 2. K - {0} is a group under multiplication, and 3. x(y+z)
= xy + xz for all x,y,z � K.Suppose that for some n, 0=1+1+1…+1 (n
times). Prove that, for all x � K, (-1)x = -x.

In the second note, the solution to the problem is — somewhat dismissively —
provided by R. G. Bilyeu:

The last part of the hypothesis is unnecessary. If z denotes -1, then z+z+zz
= z(1+1+z) = z, so zz = 1. Now z(x+zx) = zx+x = x+zx, so either x+zx
= 0 or z = 1. In either case zx = -x.

Conclusion
Theodore J. Kaczynski was a very promising young undergraduate, graduate and

post-graduate student in the 1960s. His work — although pertaining to vary narrow
topics — was undoubtedly, technically, first rate.
As is the case however, elegance or complexity do not themselves raise the impor-

tance of problems, achievements or for that matter, mathematicians. As expressed by
his fellow graduate student Professor Peter Rosenthal in a 1996 Toronto Star article
(after Kaczynski was charged):

[The] topic was only of interest to a very small group of mathematicians
and does not appear to have broader implications; thus, his work had little
impact. Kaczynski might have quit mathematics because he was discour-
aged by the resultant lack of recognition.
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In another 1996 article, in the Los Angeles Times article, Professor Donald Rung
similarly expressed:

“The field that Kaczynski worked in doesn’t really exist today […]. He
probably would have gone on to some other area if he were to stay in
mathematics,” Rung said. “As you can imagine, there are not a thousand
theorems to be proved about this stuff.”
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An Advanced Explanation of His
Breakthrough by Lara Pudwell
Original PDF: Digit Reversal Without Apology.pdf
Digit Reversal Without Apology
Lara Pudwell Rutgers University Piscataway, NJ 08854 lpudwell@math.rutgers.edu
In A Mathematician’s Apology1 G. H. Hardy states, “8712 and 9801 are the only

four-figure numbers which are integral multiples of their reversals”; and, he further
comments that “this is not a serious theorem, as it is not capable of any significant
generalization.”
However, Hardy’s comment may have been short-sighted. In 1966, A. Sutcliffe2

expanded this obscure fact about reversals. Instead of restricting his study to base
10 integers and their reversals, Sutcliffe generalized the problem to study all integer
solutions of
k(ahnh + ah-1nh-1 + • • • + a1 n + a0) = a0nh + a1nh-1 + • • • + ah-1n + ah
with n >2, 1 < k < n, 0 < ai < n — 1 for all i, a0 = 0, ah = 0. We shall refer to

such an integer a0…ah as an (h + 1)-digit solution for n and write k(ah, ah-1, …, a1,
a0)n = (a0, a1, …, ah-1, ah)n. For example, 8712 and 9801 are 4-digit solutions in base
n = 10 for k = 4 and k = 9 respectively. After characterizing all 2-digit solutions for
fixed n and generating parametric solutions for higher digit solutions, Sutcliffe left the
following open question: Is there any base n for which there is a 3-digit solution but
no 2-digit solution?
Two years later T. J. Kaczynski(1)3 answered Sutcliffe’s question in the negative.

His elegant proof showed that if there exists a 3-digit solution for n, then deleting the
middle digit gives a 2-digit solution for n. Together with Sutcliffe’s work, this proved
that there exists a 2-digit solution for n if and only if there exists a 3-digit solution for
n.

1 F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat, Acad, Sci. U. S. A.> 4
(1955) 379-382.

2 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,
J., 8 (1961) 201-207.

3 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
(1931) 283-295.

(1) Better known for other work.
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Given the nice correspondence between 2- and 3-digit solutions described by Sutcliffe
and Kaczynski, it is natural to ask if there exists such a correspondence for higher
digit solutions. In this paper, we will explore the relationship between 4- and 5-digit
solutions. Unfortunately, there is not a bijection between these solutions, but there is a
nice family of 4- and 5- digit solutions which have a natural one-to-one correspondence.
A second extension of Sutcliffe and Kaczynski’s results is to ask, “Is there any value

of n for which there is a 5-digit solution but no 4-digit solution?” We will answer this
question in the negative; and, furthermore, we will show that there exist 4- and 5-digit
solutions for every n >3.

An attempt at generalization
In the case of 3-digit solutions, Kaczynski proved that if n + 1 is prime and k(a, b,

c)n = (c, b, a)n is a 3-digit solution for n, then k(a, c)n = (c, a)n is a 2-digit solution.
Thus, we consider the following:
Question 1. Let k(a, b, c, d, e)n = (e, d, c, b, a)n be a 5-digit solution for n. If n +

1 is prime, then is k(a, b, d, e)n = (e, d, b, a)n a 4-digit solution for n?
First, following Kaczynski, let p = n + 1. We have
k(an4 + bn3 + cn2 + dn + e) = en4 + dn3 + cn2 + bn + a. (1)
Reducing this equation modulo p, we obtain
k(a — b + c — d + e) = e — d + c — b + a = a — b + c — d + e mod p.
Thus, (k — 1)(a — b + c — d + e) = 0 mod p, and
p | (k — 1)(a — b+ c — d + e). (2)
Ifp | (k—1), then k—1 > p, which is impossible because k < n. Therefore, p | (a —

b + c — d + e). But —2p < —2n < a — b + c — d + e < 3n < 3p, so there are four
possibilities:
(i) a - b + c - d + e = -p,
(ii) a - b + c - d + e = 0,
(iii) a - b + c - d + e = p, (iv) a - b + c - d + e = 2p.
Write a — b + c — d + e = fp, where f G {—1,0,1,2}. Substituting c = -a + b +

d - e + fp into equation 1 gives:
k[n2 (n2 — 1)a + n2(n + 1)b + fpn2 + n(n + 1)d — (n2 — 1)e]
= n2(n2 — 1)e + n2(n + 1)d + fpn2 + n(n + 1)b — (n2 — 1)a.
After substituting for p, dividing by n + 1, and rearranging, one sees that k [an3 +

(b — a + f)n2 + (d — e)n + e] = en3 + (d — e + f)n2 + (b — a)n + a. Indeed, this
is a 4-digit solution for n if f = 0, b — a > 0, and d — e > 0, but not necessarily a
4-digit solution of the form conjectured in Question 1.
As in Kaczynski’s proof for 2- and 3-digit solutions, it would be ideal if three of the

four possible values for f lead to contradictions and the fourth leads to a “nice” pairing
of 4- and 5-digit solutions. Unlike Kaczynski, we now have the added advantage of
exploring these cases with computer programs such as Maple. Experimental evidence
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suggests that the cases f = —1 and f = 2 are impossible. The cases f = 0 and f = 1
are discussed below.

A counterexample
Unfortunately, Kaczynski’s proof does not completely generalize to higher digit solu-

tions. Most 5-digit solutions do, in fact, yield 4-digit solutions in the manner described
in Question 1, but for sufficiently large n there are examples where (a, b, c, d, e)n is
a 5-digit solution but (a, b, d, e)n is not a 4-digit solution.
A computer search shows that the smallest such counterexamples appear when n =

22:
7(2, 8, 3, 13, 16)22 = (16, 13, 3, 8, 2)22, 3(2, 16, 11, 5, 8)22 = (8, 5, 11, 16, 2)22.
However, there is no integer k for which k(2, 8, 13, 16)22 = (16, 13, 8, 2)22 or k(2,

16, 5, 8)22 = (8, 5, 16, 2)22. Note that -2 + 8 + 13 - 16 = 3 and -2 + 16 + 5 - 8 =
11; that is, both of these counterexamples to Question 1 occur when f = 0. The next
smallest counterexamples are
3(3, 22, 15, 7, 11)30 = (11, 7, 15, 22, 3)30, 8(2, 13, 8, 16, 9)30 = (9, 16, 8, 13, 2)30,
which occur when f = 0 and n = 30.

A family of 4- and 5-digit solutions
Although Kaczynski’s proof does not generalize entirely, there exists a family of

5-digit solutions when f = 1 that has a nice structure.
Theorem 1. Fix n >2 and a > 0. Then
k(a, a - 1, n - 1, n - a - 1, n - a)n = (n - a, n - a - 1, n - 1, a - 1, a)n
is a 5-digit solution for n if and only if a | (n - a).
Proof. We have
(n - a)n4 + (n - a - 1)n3 + (n - 1)n2 + (a - 1)n + a an4 + (a - 1)n3 + (n - 1)n2 +

(n - a - 1)n + (n - a)
(n - a)(n4 + n3 - n - 1) n - a a(n4 + n3 - n - 1) a ,
and the result is clear. �
Notice that
(-a+ (a - 1)) + ((n - a - 1) - (n - a)) +p = -1 + -1 + (n+ 1) = n - 1.
That is, this family of solutions occurs when f = 1. Moreover, this family follows the

pattern described in Question 1; that is, for each 5-digit solution described in Theorem
1, deleting its middle digit gives a 4-digit solution.
Theorem 2. If
k(a, a - 1,n - 1, n - a - 1,n - a)n = (n - a,n - a - 1,n - 1, a - 1, a)n
is a 5-digit solution for n, then
k(a, a - 1, n - a - 1,n - a)n = (n - a,n - a - 1, a - 1, a)n

14



is a 4-digit solution for n.
Proof. By Theorem 1, n-a G N. Now
(n - a)n3 + (n - a - 1)n2 + (a - 1)n + a
an3 + (a - 1)n2 + (n - a - 1)n + (n - a)
(n - a)(n3 + n2 - n - 1) n - a
a(n3 + n2 - n - 1) a .
�
These 4-digit solutions were first described by Klosinski and Smolarski4 in 1969, but

their relationship to 5-digit solutions was not made explicit before now.
It is also interesting to note that 9801 and 8712, the two integers in Hardy’s discus-

sion of reversals, are included in this family of solutions.
We conclude with the following corollary.
Corollary 1. There is a 4-digit solution and a 5-digit solution for every n > 3.
Proof. Let a = 1 in the statements of Theorem 1 and Theorem 2 above. �

Some open questions
We have shown that there is no n for which there is a 5-digit solution but no 4-digit

solution. More specifically, we know that there are 4- and 5-digit solutions for every n
> 3.
Although Kaczynski’s proof does not generalize directly to 4- and 5-digit solutions,

it does bring to light several questions about the structure of solutions to the digit
reversal problem.
First, it would be interesting to completely characterize 4- and 5-digit solutions for

n. Namely,
1. All known counterexamples to Question 1 occur when f = 0. Are there counterex-

amples for which f 6= 0? Is there a parameterization for all such counterexamples?
2. Theorems 1 and 2 exhibit a family of 4- and 5-digit solutions for f = 1 with a

particularly nice structure. To date, no other 4- or 5-digit solutions are known for f =
1. Do such solutions exist?
More generally,
3. Solutions to the digit reversal problem have not been explicitly characterized for

more than 5 digits. Do there exist analogous results to Theorems 1 and 2 for higher
digit solutions?
A Maple package for exploring these questions is available from the author’s web

page at http://www.math.rutgers.edu/~lpudwell/maple.html.

4 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
4 (1957) 155-156.
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ANOTHER PROOF OF WEDDERBURN’S THEOREM
T. J. Kaczynski, Evergreen Park, Illinois
In 1905 Wedderburn proved that every finite skew field is commutative. At least

seven proofs of this theorem (not counting the present one) are known. See1,2,3 (Part
Two, p. 206 and Exercise 4 on p. 219),4 (two proofs), and5. Unlike these proofs, the
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4 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,
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proof to be given here is group-theoretic, in the sense that the only non-group-theoretic
concepts employed are of an elementary nature.
Lemma. Let q be a prime. Then the congruence Z2+r2= — 1 (mod q) has a solution

t, r with t^O (mod q).
Proof. If —1 is a quadratic residue, take r = 0 and choose t appropriately. Assume

— 1 is a nonresidue. Then any nonresidue can be written in the form — s2 (mod q)
with s^O. If t2+r2 is ever a nonresidue for some t, r, set t2+r2 s— s2, and we have
(/5~1)2 + (r5”1)2 = — 1. (Throughout this note, x-1 denotes that integer for which xx-1
= l (mod q).) On the other hand, if t2+r2 is always a residue, then the sum of any two
residues is a residue, so —l=g—1 = 1 + 14- • • • + 1 is a residue, contradicting our
assumption.
Proof of the theorem. Let F be our finite skew field, E* its multiplicative group. Let

5 be any Sylow subgroup of F*, of order, say, pa. Choose an element g of order p in the
center of 5. If some h^S generates a subgroup of order p different from that generated
by g, then g and h generate a commutative field containing more than p roots of the
equation xp=l, an impossibility. Thus 5 contains only one subgroup of order p and
hence is either a cyclic or a generalized quaternion group (6 p. 189).
If S is a generalized quaternion group, then 5 contains a quaternion subgroup gen-

erated by two elements a and &, both of order 4, where ba — a~^b. Now a2 generates
a commutative field in which the only roots of the equation x2 — 1 or (x+l)(x—1) =0
are ±1, so since (a2)2 = l, we have
(1) a2 = - 1.
Hence a^ — a2 — —at so
(2) ba = — ab.
This content downloaded from 82.46.120.253 on Thu, 21 Feb 2019 17:17:06 UTC

All use subject to https://about.jstor.org/terms
Similarly,
(3) 52 = - 1.
Taking q — characteristic of F (#-l = 0), choose t and r as specified in the lemma.

Using relations (1), (2), (3), we have
(/ + ra + 5)(r2 + 1 + rta + tb) = r(/2 + r2 + l)a + (/2 + r2 + 1)5 = 0.
One of the factors on the left must be 0, so for some numbers u, v, w, u 0 (mod

g), we have w+^a+^5 = 0, or b= -u^wa-u^w. So b commutes with a, a contradiction.
We conclude that 5 is not a generalized quaternion group, so 5 is cyclic.
Thus every Sylow subgroup of F* is cyclic, and F* is solvable (7, pp. 181— 182).

Let Z be the center of F* and assume Z^F*. Then F*/Z is solvable, and its Sylow
subgroups are cyclic. Let A/Z (with ZC^4) be a minimal normal subgroup of F*/Z.
A/Z is an elementary abelian group of order (F prime), so since the Sylow subgroups of

6 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
(1931) 283-295.

7 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
4 (1957) 155-156.
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F*/Z are cyclic, A/Z is cyclic. Any group which is cyclic modulo its center is abelian,
so A is abelian. Let x be any element of F*, y any element of A. Since A is normal,
xyx~x^A, and (l+x)y = z(l+x) for some zf^A. An easy manipulation shows that y —
z — zx — xy = (z — xyx~l)x.
If y — z = z — xyx-1 = 0, then y = z = xyx~1, so x and y commute. Otherwise, x=

(z — xyx~1’)~1(y — z). But A is abelian, and 2, y, xyx-1(E^4, so x commutes with y.
Thus we have proven that A is contained in the center of F*, a contradiction.
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A NOTE ON PRODUCT SYSTEMS OF SETS OF
NATURAL NUMBERS
T. G. McLaughlin, University of California at Los Angeles
In this note, we apply a slight twist to a trick exploited about twelve years ago by

J. C. E. Dekker ([2 ]), our purpose being to expose a couple of elementary facts about
nonempty, countable ”product systems” of infinite sets of natural numbers which are,
at the same time, ”finite symmetric difference systems.” We proceed in terms of the
following definitions.
Definition. By a product system of subsets of N (N the natural numbers), we mean

a collection of subsets of N which contains, along with any two of its members, their
intersection.
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2. 1964 - Distributivity and (−1)x
= −x (Advanced Problem 5210)
Original PDF: 2. 1964 Distributivity and (−1)x = −x (Advanced Problem

5210).pdf
Kaczynski, T.J. (1964). “Distributivity and (−1)x = −x (Advanced Problem

5210)”. The American Mathematical Monthly. 71(6), pp. 689.
ADVANCED PROBLEMS
All solutions of Advanced Problems should be sent to J. Barlaz, Rutgers - The State

University, New Brunswick, N.J. Solutions of Advanced Problems in this issue should
be submitted on separate, signed sheets and should be mailed before December 31, 1964
.
5210. Proposed by T. J. Kaczynski, Evergreen Park, Illinois
Let K be an algebraic system with two binary operations (one written additively,

the other multiplicatively), satisfying:
1. K is an abelian group under addition,
2. K - {O} is a group under multiplication, and
3. x(y + z) == xy + xz for all x,y,z EK.
Suppose that for some n, 0 = 1 + 1 + ... + 1 ( <em>n</em> times). Prove

that, for all <em>x</em> eK, (-l)x = -x.
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with Solution by Bilyeu, R.G.)
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Kaczynski, T.J. (1965). “Distributivity and (−1)x = −x (Advanced Problem

5210, with Solution by Bilyeu, R.G.)”. The American Mathematical Monthly 72(6), pp.
677–678.
Distributivity and ( -1 )x == -x
5210 [1964, 689]. Proposed by T. J. Kaczynski, Evergreen Park, Illinois
Let K be an algebraic system with two binary operations (one written additively,

the other multiplicatively), satisfying:
1. K is an abelian group under addition,
2. K - {O} is a group under multiplication, and
3. x(y + z) == xy + xz for all x,y,z EK.
Suppose that for some n, 0 = 1 + 1 + ... + 1 ( <em>n</em> times). Prove

that, for all <em>x</em> eK, (-l)x = -x.
Solution by R. G. Bilyeu, North Texas State University. The last part of the hy-

pothesis is unnecessary. If z denotes -1, then z + z + z z = <em>z</em> (1 + 1
+ <em>z)</em> = z, so z(?) = 1. Now <em>z(x</em> + <em>zx)</em> = zx + x =
<em>x</em> + <em>zx,</em> so either <em>x</em> + <em>zx</em> = 0 or z = 1.
In either case <em>z(?)</em> = -x.
Also solved by Carol Avelsgaard, Richard Bourgin, Robert Bowen, Joel Brawley,

Jr., F. P. Callahan, M. M. Chawla (India), R. A. Cunninghame-Green (England), M.
J. DeLeon, M. Edelstein, N. J. Fine, Harvey Friedman, Anton Glaser, M. G. Green-
ing (Australia), A. G. Heinicke, Sidney Heller, G. A. Heuer, Stephen Hoffman, K. G.
Johnson, A. J. Karson, Max Klicker, Kwangil Koh, C. C. Lindner, C. R. MacCluer,
H. F. Mattson, C. J. Maxson, R. V. Moddy, Jose Morgado (Brazil), W. L. Owen,
Jr., P. R. Parthasarathy (India), Harsh Pittie, Kenneth Rogers, Toru Saito (Japan),
Camilio Schmidt, Leonard Shapiro, Frank A. Smith, George Van Zwalenberg, W. C.
Waterhouse, Kenneth Yanosko, and the proposer.
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Kaczynski, T.J. 1965. Boundary functions for functions defined in a disk. J. Math.

and Mech. 14(4):589-612.
MR0176080 Kaczynski, T. J. Boundary functions for function defined in a disk. J.

Math. Mech. 14 1965 589.612. (Reviewer: C. Tanaka) 30.62

Explanation by John D. Bullough
Let D denote the unit disk |z| < 1, C its boundary, and let f(z) be any function that

is defined in D and takes its values in some metric space S. Then a boundary function
for f is a function t on C such that for every x ( C there exists an arc v at x with

lim f(z) = t(x).
z -> x
z ( v

The author proves several theorems on boundary functions in the following four
cases: (1) f(z) a homeomorphism of D onto D, (2) f(z) a continuous function, (3) f(z)
a Baire function and (4) f(z) a measurable function. These theorems include answers
to two questions raised by Bagemihl and Piranian.
Theorem 1 states that if f(z) is a homeomorphism of D onto D, then there exists a

countable set N such that t|C - N is continuous.
In the case of continuous functions, one needs some definitions. Let S and T be

metric spaces. f is said to be of Baire class 1(S, T) if and only if (i) domain f = S,
(ii) range f ( T and (iii) there exists a sequence {f(n)} of continuous functions, each
mapping S into T, such that f(n) -> f pointwise on S. g is of honorary Baire class 2(S,
T) if and only if (i) domain g = S, (ii) range g ( T and (iii) there exists a function
f of Baire class 1(S, T) and a countable set N such that f|S - N = g|S - N. Using
these defnitions, Theorems 2 and 3 read as follows. Theorem 2: Let f be a continuous
real-valued function in D and let t be a finite-valued boundary function for f. Then
t is of honorary Baire class 2(C, R), where R is the set of real numbers. Theorem 3:
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Let f be a continuous function mapping D into the Riemann sphere S and let t be a
boundary function for f. Then t is of honorary Baire class 2(C, S).
In the cases of Baire functions and measurable functions, for the sake of convenience

consider the open upper half-plane D0: I(z) > 0, and its boundary C0: I(z) = 0, instead
of D and C, respectively. Theorem 4 states that if f is a real-valued function of Baire
class a > 1 in D0, and t is a finite-valued boundary function, then t is of Baire class a
+ 1. As an immediate consequence of Theorem 4, one has Theorem 5: Let f be a real-
valued Borel-measurable function in D0 and let t be a finite-valued boundary function
for f; then t is Borel-measurable.
Next, the author proves that for an arbitrary function t on C0, there exists a function

f on D0 such that f(z) = 0 almost everywhere and t is a boundary function for f. The
paper concludes with some remarks concerning extensions of these theorems into three
dimensions.

Article by Ted
Boundary Functions for Functions Defined in a DisB
T. J. KACZYNSKI
Communicated by F. Bagemihl

1. Introduction
Throughout this paper D will denote the open unit disk (in two-dimensional Eu-

clidean space) and C will denote its boundary, the unit circle. Bagemihl and Piranian1
have introduced the following definition.
Definition. If x e C, an arc at x is & simple arc y having one endpoint at x such

that y — {x} C D. Let / be any function that is defined in D and takes its values in
some metric space S. Then a boundary junction for f is a function <p on C such that
for every x e C there exists an arc y at x with
lim f (z) = <p(x).
The purpose of this paper is to prove several theorems concerning boundary func-

tions. These theorems include answers to two questions raised in2 (see Problem 1 and
the conjecture on p. 202).
The set of real numbers will be denoted by R, W-dimensional Euclidean space will

be denoted by RN, and the Riemann sphere will be denoted by 2. Points in RN will
be written in the form {xx , x2 } • • • , xN) rather than (xt , x2 , • • • , xN) (to
avoid confusion with open intervals of real numbers in the case N — 2). Whenever

1 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,
J., 8 (1961) 201-207.

2 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,
J., 8 (1961) 201-207.
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we speak of real-valued functions we mean finite-valued functions, and whenever we
speak of increasing functions we refer to weakly increasing (nondecreasing) functions.
The abbreviations “l.u.b.” and “g.l.b.” stand for “least upper bound” and “greatest lower
bound” respectively. Finally, it should be noted that our definition of the Baire classes
is slightly unconventional (see p. 6 and p.14) in that we consider Baire class a to include
Baire class ft for every ft < a.

2. Boundary functions for homeomorphisms.
Definition. If E C D, let acc (E) denote the set of all points on C which are accessible

by arcs in E.
11 would like to thank Professor G. Piranian for his encouragement.
589
Journal of Mathematics and Mechanics, Vol. 14, No. 4 (1965).
Lemma 1. Let A be an arcwise connected subset of D and let B be a connected

subset of D. Suppose that A B —</> . Then acc (A) and B have at most two points
in common.
Proof. Assume that pr , p2 , p3 are three distinct points of acc (A) A B and derive

a contradiction. Let 7* be an arc joining pi to a point qi z A, with {Pi} A (i = 1, 2,
3). Let y be an arc in A joining and q2 . Putting
, 72 and 7 together, we obtain an arc T joining pj to p2, with r — {pr, p2} C A.

We can assume F is a simple arc, for if r is not simple, and p2 can be joined by some
simple arc Fz £ T (see3). Let Lx , L2 be the two open arcs of C determined by the
pair of points pr , p2 . We may assume, by symmetry, that p3 z Lr . According to4
(Theorem 11.8, p. 119), D — T has two components U i and U2 , the boundary of Ui
being Lx U P and the boundary of U2 being z2u r.
Let 7’ be an arc in A joining q3 to a point q z T A. Putting 73 and 7’ together, we

obtain an arc 5 joining p3 to q. Starting at p3 and proceeding along 5, let r be the first
point of T that we reach. Let A be the subarc of 5 with endpoints at p3 and r. Clearly,
A — {p3} GZ A. We can assume (according to5) that A is a simple arc.
Since p3 z Lx , p3 is not in U2 . Since
A - {p3 , r} £ D - T = Ui U2 ,
A — {ps , r} must have a point in Ux . But A — {p3 , r} is connected, so A - {p3,

r} C Ui. Hence A is a cross cut of Ur. Let Mr ,M2]oq the two open subarcs of Li with
endpoints pt , p3 and p2 , p3 respectively. Let Pi , r2 be the two closed subarcs of T

3 H. Tietze, Uber stetige Kurven, Jordansche Kurvenbogen und geschlossene Jordansche Kurven,
Math. Z., 5 (1919), 284-291.

4 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,
1961.

5 H. Tietze, Uber stetige Kurven, Jordansche Kurvenbogen und geschlossene Jordansche Kurven,
Math. Z., 5 (1919), 284-291.
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with endpoints pr , r and p2 , r respectively. According to6 (Theorem 11.8, p. 119), Ur
— A has two components Vi and V2, the boundary of Vi being kJ rx kJ A and the
boundary of V2 being M2 kJ r2 kJ A.
Since P U A C 2I, Vi^J V2\J U2. Recall that p3 4 U2 . It follows that since p3 z B,

B has a point in common with Vi^J V2 . But B is connected, so B £ Vi yj V2. We
see that pr $ V2, and therefore that B Vi 4=</> (because Pi z B). Hence B £ , so p2
z W . But, since the boundary of Vt is Mx
I\ kJ A, p2 Vi . This contradiction proves the lemma.
Lemma 2. There exists a countable family 8 of open disks such that every open set

U Q R2 can be written in the form U — Sn , where Snz § and Sn £ U.
Proof. Let {pn} be a countable dense subset of R2, and let 8 be the family of all

open disks of rational radius having some pn as center. 8 is clearly countable. If U is
an open set it is easy to show that for each x z U there exists an Sx z 8 with x z Sx £
Sx £ U. Obviously
u = \J sx.
xt.U
Theorem 1. Let f be a homeomorphism of D onto D, and let <p be a boundary

function for f. Then there exists a countable set N such that <p |C-^ is continuous.
Prooj. Take an arbitrary aS £ S. It is easily shown that DPS and D — S are both

connected, so f-1(D (P 8) and— 8) are both connected. Given x0 e C, let y be any arc
at xQ . If
xQ $ acc (f-1(D iP aS)),
then we can choose points on y arbitrarily close to xQ which are not in f~1 (D (P

8), so
x0 £ D - r\D CPS’) = r\D -aS).
This shows that
(1) C Q acc aS)) kJ r~\D -aS).
Let
F = acc (f-\D fP aS)) H f~\D -aS).
By Lemma 1, F contains at most two points, and from (1) we see that acc (rXD

S)) = FU (C - r\b - aS)).
Thus we have shown that for each aS £ S we can write
acc (T\D aS)) = F$ kJ Gs ,
where Fs is finite and Gs is open (relative to C).
For any arc y at a point x on C, the cluster set C(f, t) of f along y is defined by
C(/, t) = {w £ 2?2 kJ { oo } | there exists a sequence {zn} QyPD such that zn —>

x and f (zn) —> w}.
Let
E = {x £ C | there exist arcs yx, y2 at x such that C(/, yj IP C(J, y2) =</> }•

6 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,
1961.
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A theorem of Bagemihl7 states that E is countable. Let
N = E \J Fs .
St s
N is countable. Let <pQ denote the restriction of <p to C — N.
If U is any open set, write U = Sn , where Sn £ S, Sn CZ U. Suppose x £ (pQ1 (U).

Then (x) = <p(x) £ Sn for some n, which implies that a; £ acc (/~1 (SnC\D)). Thus
¥>0 W) C \J acc (f-\Sn n Z>)) - N. n
On the other hand, suppose x £ acc IP D)) for some n, and x 4 N. Choose an arc

y in fXSn (P D) with one endpoint at x. Clearly,
C(f, y) C Sn (P D CSnCU.
Since x 4 E,
?.() = p() £ C(j, y) c u,
so x t ^’(G). Thus
\J acc (Tl(Sn r\D))-NC ^\U), n
SO
<Po’(U) = U acc (r\S„ f~\ D)) — N = \J (Fs, U Gs„) - N n n
= VGs. -n = (U^s.) n (C - N). n n
Thus, for each open set 17, <Pol(U) is an open set relative to C~N. Therefore
<p0 is continuous. Q.E.D.

3. Boundary functions for continuous functions.
Definition. Let 8 and T be metric spaces. We will say the function / is of Baire

class 1 (8, T) ij, and only if,
(i) domain j = 8,
(ii) range IQT, and
(iii) there exists a sequence {/„} of continuous functions, each mapping 8 into T,

such that f„—>f pointwise on 8.
We will say the function g is of honorary Baire class 2(8, T) if, and only if, (i)

domain g = 8, (ii) range g C T, and
(111) there exists a function / of Baire class 1(8, T) and a countable set N such

that f Is-jv = Is-at .
Lemma 3. Let f be a continuous real-valued junction in D and let <pbe a finitevalued

boundary junction jor j. Let r and t be real numbers with r < t. Then
(A) there exists a Gs set G and a countable set N such that
^([r, 4-oo)) o G 2 ^([t, +oo)) - AT, and
(B) there exists a Gs set H and a countable set M such that
t]) 2 H 2 <1((-°°, r]) - M.
Prooj. Let

7 F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat, Acad, Sci. U. S. A.> 4
(1955) 379-382.
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t — r e ~ 2 ’
Cn = Lit1 | |z| = 1 - 4 , ( n]
An = \ztR2 | 1 - - < >| < 4 ,
( n J
En — {x e C | there exists an arc y at x having one endpoint on Cn , with y — {x}

Q f1((— 00, r))|,
K = {x e C | there exists an arc y at x with y — {$} c f1^ — c, +«>))}.
Observe that
^((-co.r)) C \jEn , n«l
and
<\(/ - e, +«>)) C K.
For the time being, let n be a fixed integer. If x £ K, we can find an arc y9 at x

such that
y* - M C AnC\f\\t - c, +«>)).
Since an arc at x is by definition a simple arc, yx — {x} is a connected set. It follows

that yx — {rc} must be contained entirely within one component of the open set
Annn(/-e,+-)).
We denote this component by Ux . Ux is a nonempty open connected set._ Let T

be the set of all points of K which are two-sided limit points of En.
Assertion. If x, y £ T and x 1 y, then Ux C\ Uy = <j>.
To prove this assertion we assume that z is a point of Ux A Uv and we derive a

contradiction. Choose points xr and y’ in yx — {x} and yv — {?/} respectively. Join x
to xf by an appropriate subarc of yx . Join xf to z by an arc in Ux . Join z to y* by an
arc in Uv. Join y’ to y by a subarc of yv. Putting these arcs together, we obtain an arc
a with endpoints at x and y such that
a - {x, y} C AnC\ f~\(t - e, + co)).
We can assume that a is a simple arc, for if a is not a simple arc we can replace a

by a simple arc a’ CZ a having endpoints at x and y (see8). a is a crosscut of D. Let
Li and L2 be the two open arcs of C determined by x and y. According to9 (Theorem
11.8, p. 119), D — a has two components, Pi and V2 , whose boundaries are Lr kJ a
and L2 a respectively. From the fact that Cn is connected and does not intersect a it
follows that Cn is contained entirely within one component of D — a. By symmetry,
we may assume Cn £ V 2 •
Since $ is a two-sided limit point of En , Lr must contain a point of En , and hence

a point of En . Say w £ A En . There exists a simple arc ft joining w to some point on
Cn , with
ft — {w} C 00 , r)).
ft — {w} cannot have a point in common with a, because
8 H. Tietze, Uber stetige Kurven, Jordansche Kurvenbogen und geschlossene Jordansche Kurven,

Math. Z., 5 (1919), 284-291.
9 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,

1961.
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a ~ {x, y} C f~\(t - €, +00)), and
e,+-)) =</> .
Thus Cn U (0 — {w}) is a connected set not meeting a. Cn U (/3 — {w}) meets

y2,soCnVJ (0 — {w}) C V2 . Consequently, w is in the boundary of V2 . But this is
a contradiction, because w e Lx and the boundary of V2 is L2 U a. This proves the
assertion.
From the assertion it follows immediately that T is countable; for any family of

disjoint nonempty open sets is countable. We know that the set >S of all points of En
which are not two-sided limit points of En is countable.
K C\ En = [K C\ S] U [KH (En - S)] = (KC\ 8) T.
This shows that (for any ri) K C\ En is countable. So if we let
N = K C\ \JE„ =. Q (K C\ En), n = l n=l
then N is a countable set. Let
G = C — \_)En . n = l
G is a Gs set. Using the fact that
<*((-«>, r)) C \jEn C \jEn , n=l n—1
we find that
00
C - <*((- oo, r)) 2 c - \jEn = G 2 K - N.
n=l
But
=^([r,+-))
and
K O ^((/ - €, +«>)) o +«>)), so
<X[r, + +oo)) - N.
This proves (A). To prove (B), simply replace / and by —f and and apply (A).
Theorem 2. Let f be a continuous real-valued function in D, and let <p be a finite-

valued boundary function for f. Then is of honorary Baire class 2(C, R).
Proof. For each pair of rational numbers r and t with r < t, choose G& sets G(r,

t), H(r, t) and countable sets N(r, i), M(r, f) such that
+«>)) O G(r, t) O + <»)) - N(r, f), and
<*((- ~, t]) 2 H(r, f) 2 «>, r]) - M(r, Z).
Let
N = {J [N(r, t) V M(r, /)],
where the union is taken over all pairs of rationals r, t with r < t. N is countable.

Let (p0 denote the restriction of to C — N, and let G*(r, t) = G(r, t) — N. Since
every countable set is an Fff set, G*(r, t) is a G8 set. Observe that
(2) ^([r, +-)) = ^([r, +«.))- N 2 G*(r, f)
2 +-)) - N = ^([Z, +-))•
If t is a fixed rational number, let {rn} be a strictly increasing sequence of rational

numbers converging to t. Then, by (2),
C\ <PoX[r. , +»)) 2 O G*(r. , f) 2 <p~0\[t, + «>)) = ^\[ra ,+«)),
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n=l n=l n=l
SO
^’(R,+°°)) = C\G*(rn,f). n = l
This proves that for every rational t, ^([J, + 00)) is a G8 set.
If u is any real number, choose a strictly increasing sequence {£nJ of rational num-

bers converging to u. Then
+00)) = fWoWn , +00)), n = l
SO <p-Q\[u, + oo)) is a G8 set. By a similar argument, we find that ^o1((— 00, u])

is a Ga set for every real u. So
>, + -)) = (C - N) n (C - , u]y)
is the intersection of an Fff set with C — N. By a theorem stated on p. 309 of

Hausdorff’s paper10, <p0 can be extended to a real-valued function on C such that for
every real u, +00)) is a G8 set and +<»)) is an Fa set. By Theorem IX of the same
paper, is of Baire class 1(C, 7?). Since <p(x) = pxtx) except for xz N, <p is of honorary
Baire class 2(C, 7?). Q.E.D.
Corollary. Let f be a continuous -junction mapping D into RN, and suppose <p : C

—» RN is a boundary junction jor j. Then <p is of honorary Baire class 2(C, RN).
Proof. We simply write our functions in terms of their components, say
f — (fl ! f ’2 J * ’ • , and (p — (epi , <p2 i • • • , <Pn) ’
Obviously <Pi is a boundary function for /,• , and so is of honorary Baire class

2(C, jR). We choose a function of Baire class 1(C, R) which agrees with <pi except
on a countable set M i . Setting
0 = <0i , 02 , • • • , 0AT>,
it is clear that g is of Baire class 1(C, RN), and that g agrees with <p except on the

countable set VJi-i Mt • Hence <p is of honorary Baire class 2(C, RN).
Q.E.D.
Lemma 4. Let g be a continuous junction mapping C into R3. Let q be a point of

R3 and let e be a positive real number. Then there exists a continuous function g* : C
—> 7?3 such that q does not lie in the range of g*, and for all x v C,
\g(x) - q\ e => g(x) = g*(x).
Proof. Let
S = {yvR3 | \y - g| < e}.
If 0(C) CZ S, let g* : C —> R3 be any continuous function whose range does not

include q. Otherwise, 0~1(/S) is a proper open subset of C and hence can be written
in the form
g~XS) = UA, k
where
Ik = {e’‘ | at < t < bk], and
k 1 I =>Ik Ii =</> .

10 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-
309.
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Since 0~1({0}) is a closed (and therefore compact) subset of 0~1(>S), 0~1({^}) is
covered by a finite number of Ifc’s. Say
0’1({0}) … \JIn.
The endpoints eiak and et6A of Ik are not in 0~1({<?}), so we can construct, for each

k, a continuous function gk : Ik-+ R3 such that
Sk(eiai) = g(eiai), = g^*),
and q is not in the range of gk . Define
0*(x) = 0(a:), if o;£C~ (AUZ2U … U/n),
0*(x) = gk(x), if x e Ik , k = 1, • • • , n.
It is easy to show that g* has the desired properties.
Theorem 3. Let f be a continuous function mapping D into the Riemann sphere 2,

and let <p be a boundary function for f. Then <p is of honorary Baire class 2(C, 2).
Proof, Since 2 is a subset of J?3, the corollary to Theorem 2 shows that <p is of

honorary Baire class 2((7, 2?3). Let g be a function of Baire class 1(C, 2?3) which
differs from <p only on a countable set N, Then g(C)— 2 is countable, so there exists
a point q inside of 2 (that is, in the bounded open domain determined by 2) which is
not in the range of g. Let {</„} be a sequence of continuous functions converging to
g. By Lemma 4 we can find (for each ri) a continuous function g*n : C —» R3 such
that q does not lie in the range of g* , and for all x £ C,
- g| gn(x) = g*(x). a
It is easy to show that g*n —» g.
We define a function P as follows. If a e R3 — {q}, let I be the unique ray with

endpoint at q that passes through a, and let P(a) be the intersection point of I with 2.
Obviously, P is a continuous mapping of R3 — {<?} onto 2, and P fixes every point
of 2. Therefore
F(0(z)) = if x^N,
P(g*n(x)) is a continuous function from C into 2, and
F0(x)) as n oo.
This shows that <p is of honorary Baire class 2(C, 2). Q.E.D.

4. Boundary functions for Baire functions.
In this section we concern ourselves only with real-valued functions. We shall prove

that a boundary function for a function of Baire class a 1 is of Baire class a + 1. It
is convenient to prove this theorem for functions that are defined in the (open) upper
halfplane and have boundary functions defined on the rr-axis rather than for functions
defined in D, Once the theorem is proved in this form it is a routine computational
matter to show that it also holds for functions defined in D, The reader should be
familiar with the results of Hausdorff11 before reading this section. Unfortunately, we
must begin with some tedious preliminaries.

11 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-
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Let
We will regard C° as being identical with R.
Suppose 8 is a metric space. Let g^ be the class of all open sets of $ and let be the

class of all closed sets of 8.
A function / : >8 —> R is of Baire class 0 if and only if it is continuous. For any

ordinal number a > 0, f is of Baire class a if and only if / is the pointwise limit of a
sequence of functions each of Baire class less than a.
Let denote the class of all sets M C S such that
M = r\(r, +«>)),
for some real rand some function / of Baire class a on >S. Let 912 denote the class

of all sets N C & such that
N = r\[r, +-)),
for some real r and some function / of Baire class a on 8. It is easily shown that

9TCj = and 9l£ = .
Let
9 — 9c«> = g«,
gj = ,
9Ea = ,
91* = 9lco = 912 , If 0 is any class of sets, let 0a denote the class of all countable

unions of members of 0, and let 08 denote the class of all countable intersections of
members of 0. Each of the following facts is either explicitly stated in12, or can be easily
deduced from statements found in13, or is obtained by a routine transfinite induction
argument.
I. 9TC2 = (\J 9lX , 9i? = (U 9TtX •
X<a X<a
II. Let A be any subset of the metric space 5. If / is a function of Baire class a on

S, then / 1^ is a function of Baire class a on A.
III. Let f be a function of Baire class a whose domain contains {(x, b) | x e 2?}.

Then j((x, b)) is a function (of x) of Baire class a.
IV. If A C 8, then
9R? = {M r\ A | M e Oil?}, 9Z“ = {N C\ A | Ve9l?}.
V. If / is of Baire class a on 8, then for each real r,
and
VI. If a 2, then (gs)s U C gn“ C\ .
VII. E £ °fCaso 8 - E e .
VIII. cJTCs and are closed under finite unions and intersections. is closed under

countable unions and 91^ is closed under countable intersections.

309.
12 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-

309.
13 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-

309.
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IX. Let f be a real-valued function on S. Suppose that for every real r
and
r>, +«))e^ .
Then / is of Baire class a.
Definition. If A and B are two sets, we will call A and B equivalent, and write A ~

B, if and only if A — B and B — A are both countable. It is easily verified that ~ is
an equivalence relation.
Lemma 5. If A ~ E, then 8 — A ~ 8 — E for any set 8. If An ~ En (for all n in

some countable set V), then
)jAn~\jEn and ~ •
ntN ntN ntN ntN
The proof of this lemma is routine.
Definition. An interval of real numbers will be called nondegenerate if it contains

more than one point.
Lemma 6. Any union of nondegenerate intervals is equivalent to an open set.
Proof. Let 4 be a family of nondegenerate intervals and let H = For any x and y let
ZO, y) = [x, y}, if x g y,
and let
i(%>y) = [y, ^1,
Define a relation (R on H by
x(Sly <=>I(x, y) CZ H,
(x, yzH).
It is easy to show that (R is an equivalence relation on H. In view of the fact that

a set A of real numbers is an interval if and only if
x, y e A =>I(x, y) C A,
it is obvious that each equivalence class is an interval. For each x £ H, there exists

an I £ $ with x £ I. Every member of I is equivalent to x. Thus each equivalence
class contains more than one point, and hence is a nondegenerate interval. Let {Ja}be
the family of equivalence classes. Any disjoint family of nondegenerate intervals is
countable, so there are only countably many Ja’s. Let E be the set of all endpoints of
the various Ja’s. Then E is countable and
H = \J Ja~ IJ Ja - E = \Jj*, a a a
where <7* is the interior of Ja . This proves the lemma.
Lemma 7. Let h be an increasing real-valued -function on a nonempty set E CZ R,

Suppose that \x — h(x)\ 1 for every x s E. Then h can be extended
to an increasing real-valued function hx on R.
Proof. Let e ~ g.l.b. E (e may be — oo). For each xQ e (e, + °°) set
hi(x<f) = l.u.b. {h(x) | x e (— oo , xQ\ C\ E}.
Since Jx — h(x)\ g 1 for all x e E,
x e (— oo, x0] TA E h(x) g x0 + 1, so is finite-valued. If e = — oo we are done. If

e > — oo} then x e E implies
h(x) e — 1, so A is bounded below. For xQ s (— °°, e] set
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Ai(^o) = g.l.b. {A(x) | xtE],
It is easily verified that hr has the desired properties.
Lemma 8. Let f be a real-valued function of Baire class a on R. Let h be an increasing

real-valued function on R. Set g(x) = Then there exists
a countable set N such that g tv is of Baire class a.
Proof. It is well known that an increasing function has at most countably many

discontinuities. Let M be the set of discontinuity points of h. If f is of Baire class 0,
then g is continuous at all points of I? — M, so g is of Baire class 0. This proves the
lemma for the case a = 0.
We now proceed by transfinite induction. Suppose the lemma holds for every ordinal

X < a. If f is of Baire class a we may choose a sequence of functions {fn} converging
to f, where fn is of Baire class Xn < a. If we set gn(x) — fn(h(%y) it is clear that g}!(x)
—» = {/W- By the induction hypothesis we may
choose (for each n) a countable set Nn such that gn It?-^ is of Baire class Xn . Let

N = Nn . Then gn |R_N is of Baire class Xn , and since gn |t?_at —» g U-at, g | -at
is of Baire class a. This proves the lemma.
Theorem 4. Let f be a real-valued function of Baire class a 1 on D°} and let <p be

a finite-valued boundary function for f. Then <p is of Baire class a + 1.
Proof. Let r and t be two real numbers with r < t. r and t will remain fixed

throughout the first part of the proof. Set
Q = +<»)),
E = P\J Q,
t — r e = – •
Observe that P C\ Q = <t>. For each xtE, choose an arc yx at x such that lim f(z)

= <p(x), yx C {z | \z — x| g 1}, z—>x
and
(a) /(?*) £ (— 00 , r + e), if x s P
(b) f(7») £ (J - €, +«>), if xtQ.
(This is accomplished by cutting the arc off sufficiently close to a;.) We remark that

if x e P and y £ Q, then yx C\ yy =</> .
We will say that yx meets yy in AQn provided that yx and yy have subarcs y’ and y’

respectively such that x £ y’ GZ A°, y £ y’ C A°, and y’ P yy 4</> . Let
Lo = {x £ P | (Vn)(3?/ 4= x)(yx meets yy in A°n)},
Lr = {x £ Q I (Vn)(3?/ 4= x)(yx meets yy in A®)},
Mo = £ P | (ln)(yx meets no yv (y 4= x) in A®)},
{x £ Q | (?ri)(yx meets no yy (y 4= x) in A®)},
L = Lo V Lt ,
M = M0\J Mr.
Observe that Lo , Lr , Mo , Mt are pairwise disjoint, and that P = Lo Mo and Q =

Lx U Mr .
For each x £ M, let nx be an integer such that yx meets no yy (with y 4= x) in A®*

. Notice that n nx implies yx meets no yy in A® . Let
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Kn = {x £ E | yx meets C®, and if x £ M, nx n}.
Clearly E = VJn-i Kn . Moreover, Kn C K n+1 for each n.
Take any fixed integer n. For each x £ Lo we can find a y 4= x such that yx meets

yv in A® . Let Inx be the nondegenerate closed interval between x and y. We shall
show that Inx C Lo U (C® - Kn\ If t £ Inx , either t £ CQ - Kn or t £ Kn . Suppose t
£ Kn . Then yt meets C®, and (if t £ M) nt n. It is clear from Figure 1 that yt must
meet either yx or yy in A® . (This can be rigorized by means of Theorem 11.8 on p.
119 in14.)
Consequently, t % M. Now x iL0 Q P, so since yx intersects yy , y $ Q. So y e E —

Q = P. Similarly, since yt meets yx or yy, t e E — Q = P. Thus t e P — M = Lq . We
have shown that t e Inx implies that t e C° — Kn or t e Lq , so Inx £ Lq V (C° — Kn).
It follows that (for each ri)
L0Q(\Jr^r\E q[l0\j (c° - xj] n e. XzLq
Let W„ = kJxet, Inx . By Lemma 6, Wn is equivalent to an open set. loq(c\w}c\e

’n==l /
C M [Lo kJ (C° - Kn)]} H E = \l0 v f} (.0° - K„)} n E
= {Lo n E] H (C° - K„) n e\ = Lo V = La .
Therefore LQ = Wn) A E. Since each Wn is equivalent to an open set there exists

a GQ e g8 such that
Lo — Go n E.
Similar reasoning shows there exists a Gx e Q§ such that
E.
Next we study the properties of MQ , It is convenient to define a function 7T : R2

—» R by ir({x, y)) = If x e M C\ Kn , then, starting at x and proceeding along yx ,
let (?n(x) be the first point of CQn reached. Set h^(x) = ir(an(x)) (for x e M C\ Kn).
is an increasing function on M C\ Kn ; for if Xi, x2 £ M Kn and xx < x2, then, since

cannot meet yXi in AQn, it is evident (see Figure 2) that tt^Xxj)) < ^(<rw(£2)). (The
argument can be rigorized by means of Theorem 11.8 on p. 119 in15.) Since
yx £ {z | |z - 1}, |x - h°n(x)\ g 1.
So by Lemma 7 can be extended to an increasing function hn on C°.
Let
Gn(x) = •
For x e M C\ Kn ,
gn(x) =
If x £ M, then for all sufficiently large n, x £ M C\ Kn , so lim gn(x) = lim f(<r„(a;))

= <p(x). n—*a> n—�<»
Thus gn k —» cp k . By III, /(($, 1/n)) is a function (of x) of Baire class a, so by

Lemma 8 we can choose, for each n, a countable set Nn such that gn | C*-Nn is of Baire
14 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,

1961.
15 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,

1961.
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class a. Let N = VJZi Nn . Then gn k-# is of Baire class a. But gn Iat-jv —> <p k-w
, so <p k-^ is of Baire class a + 1.
Now
p (M - N) = & k-k-1((- r]) = Try (m- n), where T s 9la+1 (by IV and V). Clearly

P C\ M ~ T C\ M.
We have
L = Po U L, ~ (Go n F) VJ (Gt n E) = (Go U GJ H E,
so L ~ G C\ E where G e g8 . Also
M0=PKM~TC}M = T C\(E - L)
~tc\[e - (g n P)] = [t n (c° - g)] n e.
Since G e g5 , G° - G e , so by VI and VIII, T C\ (C° - G) e 9T+1. Thus
Mo — To n E,
where To e 9l“+1. Now we can examine the properties of P.
P = (GqKE)U (To n E) = (Go U To) n E,
so, again by VI and VIII,
p ~ 7\ n p,
where Tx e 9la+1. Since a countable set is in and the complement of a countable set

is in g8 , it is easy to show (using VI and VIII) that
P = T2 H P,
where T2 e 9la+1. Since P C\ Q = <f>}
P £ T2 C C° - Q.
Remembering the definitions of P and Q} and observing the fact that C° — ^-1(k

+00)) = ^-1((” 00, 0)> we can summarize the results of the first part of the proof as follows.
For each pair r, t of real numbers with r < t, there exists a set T(r, t) e 3l“+1 such

that
^((~ r]) C T(r, t) C a„ t».
Given any real r, let {Zn} be a strictly decreasing sequence of real numbers converg-

ing to r. Then
<’((—00, »•]) = °°, /„)). n = l
So
<*((- »,r]) £ H T(r, /„) C f\ <1((- «>, in)) = v~\(- «, r]), n“l n—1
and hence
^((_ro,r]) = C\T{r,Q. n~l
By VIII,
<1((~°o,r]) e9T+1.
Since / is an arbitrary function of Baire class a in Z)° and <p is an arbitrary

boundary function for /, we can replace /, $>, r by — /, — cp, ~r to find that
^([r, +«>)) e9la+1.
Also,
^((r, +00)) = C° - £snr+1.
By IX, <p is of Baire class a + 1. Q.E.D.
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5. Boundary functions for measurable functions.
Theorem 5. Let f be a real-valued Borel-measurable function in DQ and let <p be a

finite-valued boundary function for f. Then <p is Borel-measurable.
Since every Borel-measurable function is of some Baire class a, this theorem is an

immediate consequence of Theorem 4. We now show that a boundary function for a
Lebesgue-measurable function need not be Lebesgue-measurable.
Let u denote Lebesgue measure on R and let /z2 denote Lebesgue measure on R2.

Let denote exterior Lebesgue measure on R] that is,
Me(S) = g.l.b. {/z(G) I G is open and E C G},
for any set E C R.
Lemma 9. Let h be an increasing real-valued function on a set E C R. Then there

exists an open interval I 2 E such that h can be extended to an increasing real-valued
function on I.
Proof, If E is unbounded below, set a — — co. If E is bounded below, set a = g.l.b.

E, if (g.l.b. E) 4 E,
a = (g.l.b. E) - 1, if (g.l.b. E) £ E.
If E is unbounded above, set b ~ + 00. If E is bounded above, set
b = l.u.b. E, if (l.u.b. E) 4 E,
b = (l.u.b. E) + 1, if (l.u.b. E) e E.
Let I = (a, b). Clearly E c: Z. Let e = g.l.b. E (e may be — <»). For x0 £ (e, b)

set
ftxtf) ~ l.u.b. {h(x) | x c (a, $0] Pi E}.
If e = a we are done. If e >a then e £ E. For xQ £ (a, e] set f(x0) = A(e). It is

easily verified that f is finite-valued and increasing, and is an extension of h.
Lemma 10. Let E C R be a set of measure 0 and let h be an increasing function on

E. Suppose h(E) has measure 0. Then {x + h(x) | x £ E} has measure 0.
Proof. Extend h to an increasing function g on an open interval I = (a, b) 2 E. Set

g(a) = — 00 and g(b) = + 00. Take any e > 0. Choose an open set G such that I and
utG) < e/2. Choose an open set H Z) h(E) with /z(ZZ) < e/2.
Say
G = U In , and H = \J Jm , mN mtM
where {In | n £ N} and {Jm | ms M} are countable families of disjoint open intervals.

Let In = (an , bw), and observe that an , bn £ [a, b]. Set
s = (J {g(a„), g(bn)} - {- 00 , + co }.
mN
Notice that S is countable. Set
Kn = (g(a„), g(&n)).
One can easily verify that k 1 n implies Kk P Kn = 0.
If A and B are two subsets of 2?, let
A + B = {a + b \ as, A,b sB}.

37



It is easy to show that for any two intervals J and <7’, ge(<7 +</’) g + ^(J’). Let
W = {x + h(x) | x £ E].
Assertion.
w c (E + S) KJ \J \J [(Zn n g-W) 4- (Jn r\ K.)]. mN imM
To prove this, let w be an arbitrary point of W. Write w = x + h(x)f where x sE.

For some n, x £ In . Since g is increasing,
h(x) = g(x) £ [#«), g(bn)].
If h(x) equals g(an) or #(6n), then h(x) e S, so w = x + h(x) e E + 5. On the other

hand, suppose h(x) 4= #(an), <?(&„). Then h(x) £ Kn . Also, g(x) = h(x) £ Jm for
some m. Thus h(x) £ JmC\ Kn and x £ In C\ g~\Jm)} so that
w = x + h(x) £ (In C\ g~\Jm)) + (Jm C\ Kn).
This proves the Assertion.
Since g is increasing, g^J^ is an interval, so both In C\ g~\Jm) and Jm C\ Kn are

intervals. Also note that m 4= I implies g~\J„^ g~\Ji) —</> . By the Assertion,
M.W g + s) + S E n g~\jmy) + (Jw n #n)] mN mtM
g ne(E + s) + E E [m(/b n n o
mN mzM
= m/U (s + t?)) + E [ E n g~\jmy) + £ »(jm c\ Kn)] szS mN mtM mtM
< E <em>+ E)</em> + E W.) + E mGA. n 2Q]
utS mN mtM
= 0 + ju(G) + E E c\ Kn) nzN mzM
= m(g) + E E m(A. n Kn)
mtM nzN
m(G) + E mW = m( <?)+ 1EH) < e. mt M
Since e is arbitrary, jne(W) = 0.
Lemma 11. Let L — {(x, a) | x £ E} and M = {{xy b) | x £ R} be two horizontal

lines in R2. Let E be a set of (linear) measure 0 in L and let F be a set of (linear)
measure 0 in M. Let £>be a set of closed line segments such that
(a) , $2 £ <£, S2 �—Si F\ S2 =

(b) $£ <£=>one endpoint of s lies in E and the other endpoint lies in F.
Let S = \Jkt& s. Then u2(S) = 0.
Proof. Assume without loss of generality that b >a. For any (x, y) £ R2 let ^({x,

y)) = x. For any y £ R let ly = {{x, y) | x £ R}. Let
Eo = {z £ E | z is the endpoint of some s £ <£},
and observe that Eo has linear measure 0. For any set A C R2 we of course set tt(A)

== {x £ R | (xj y) £ A for some y £ R}.
We define a function h on ir(E0) as follows. If $ £ ^(Eq), then {x, a} zE0 , so we can

choose a (unique) segment s £ <£ with one endpoint at (x, a). If the other endpoint
of s is p, we set h(x) = 7r(p). Clearly h maps ir(E0) into tt(F).
Since the segments in £ cannot intersect each other, h must be an increasing func-

tion.
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Take any yQ with b >yQ > a. Let c = b — y0, d = y0 — a. A simple computation
shows that if q s lVo C\ 8, then
tt(q) =
ex + dh(x) c + d

for some x s tt(£?0)- So
7r(lyo A 8) C
ex + dh{x) . e + d
X £ 7r(Fo)

Now (d/e)h(x) is an increasing function mapping tt(Eq) into (d/c)7r(F), so by
Lemma 10
x + h(x)
X £ Tt(Eq)

has measure 0. Hence
X £ Tt(Eq)
ex + dh(x) . e + d
X £ Tt(E0)

has measure 0, so A SY) = 0. But A 8)) = 0 also when yQ 4 (a, b), so A 8)) = 0
for every y. If we knew that 8 were measurable, the lemma would follow immediately
from the Fubini theorems. But since we have, as yet, no guaranty of the measurability
of 8, a more complicated argument is necessary. At several stages in the argument the
reader will find it useful to draw diagrams to help him visualize the situation.
For any yY , y2 s R, let
U(,yi > 2/2) = {{x, y) \ x, y t R, yt < y < y2}.
A set of the form U(yi , y2) will be referred to as a horizontal open strip.
For each positive integer n, let <£(n) denote the set of all segments s e £ such that

s has a point in common with {{Xj b) | x e (—n, ri)}. Let
S(n) = [ U S]H + i b-i).
Since la and lb have (plane) measure 0, and since
sc I.U4U Q S(n), n = l
it is sufficient to show that each S(ri) has measure 0.
Let n be a fixed positive integer. Set a* = a + 1/n and b* = b — 1/n. Take any e

> 0. Choose €0 so that 2e0 + e* < e/(b — a). Let y0 be any member of [a*, b*]. For
the time being, yQ will be held fixed.
For each s e <£, let p8 be the endpoint of 8 on lb , let qt be the intersection point

of s with lV9 , and let ra be the endpoint of 8 on la .
Choose an open set G £ R such that tt(1Vq A S(n)) C G and g((?) < e0 • Say G

= VJ, Ij, where Z, = (af , b^ and the Z, ’s are pairwise disjoint. We may assume that
each Z,« contains a point of tt(1V9 S(n)). For each let
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Ci = g.l.b. {7r(pa) | s e £(n), 7r(ga) e ZJ,
dj = l.u.b. {^(p,) | s e £(n), 7r(g«) e Z,}, c< = g.l.b. {?r(ra) | 8 e <£(n), ?r(^) e

Z,}, d’i = l.u.b. {?r(ra) | 8 s £(n), ir(q8) e ZJ.
Note that c, g d,- and c< g d< . Since the segments in £ cannot intersect each

other, it is easily seen that the intervals (c,- , d,) are all pairwise disjoint. It is also
clear (from the definition of £(n)) that each (c,-, d,) is a subset of (~ n, ri). Hence, if
we set a,- = d,« c7- , we have 22,- a,- g 2n.
For each j, let s(j) be the line segment joining the two points (c< , a), , b), and let

t(j) be the line segment joining the two points (d< , a), (d,- , b). Let Af be the closed
subset of U(a, b) which is enclosed by the two line segments 80), ^0). Let Hj denote
the intersection of A,- with the horizontal open strip
V — LI max
€o I • J 7 I €0 I I o’^-^pminV’^ + 2^/r
Note that Hf is measurable. Setting ZZ = Hf, it is clear from the definition of the

A/s that
S(ri) C\V QH.
Take any y s R. We wish to show that
M0-(ZZ A ly)) <
__ e__ b — a
We can, of course, assume that
l J €o I • J 7 . €o I |
y e I max \a, ya — , mm S b, y0 + ^(r
An elementary computation, using the geometrical properties of Hj, shows that
n i,)) g (i + 4^–
\ o yQ / o yQ
Therefore
n z„)) g E n w
- G+n ^)e°+2n2
” 2c0 + €0 < t , b — a
so v(ir(H lvY) < e/(b — a) for every y.
We have shown that for each yQ e [a* &*] there exists a horizontal open strip
V(yQ) containing lVo , and there exists a measurable set H(yQ) C y(?/0), such that
S(n) H V(y0) £ H(y0)
and (for every y) ir(H(yQ) lv) is measurable and
y«H(y0) Cy Zy)) <
The various open strips VG/o) (i/0 « [a*, 6*]) clearly cover the compact set {(0, y}

I y e fa> &]} • Choose a finite subcovering V(y2\ • • • , V(ym). Set
tm— 1 /
m \
U V(y,)]
J“»+l /
n I7(a*, 6*).
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H(ym) U \J IW) -
X
Obviously K is measurable, and for each y, ir(K A Z„) is measurable and C\ lv)) <

e/(b - a). Moreover, S(n) C K. We have
\K) = £ ^(K C\ 1,)) dy g £ dy = (6 - a*) < e.
Since e is arbitrary, this shows that
g.l.b. {/(X) | K measurable, S(n) C K} = 0.
Therefore S(n) has measure 0.
Lemma 12, For every e > 0 there exists a strictly increasing function h on R such

that h(R) has measure 0, and for every x, I# — A(x)| e
Proof. For each (not necessarily positive) integer n, let In = [ne, (n + l)e]. Then In

= R. There exists a strictly increasing function f : [0, 1] [0, 1]
such that m(/([0, 1])) = 0. For example, such a function may be defined as follows.

Any number in [0, 1) may be written in the form
.a1a2a3 • • • an • • • , (binary decimal),
where the decimal does not end in an infinite unbroken string of l’s. Set
f(.a!a2a3 • • • an • • •) = bib2b3 • • • bn • • • , (ternary decimal), where bi = 0

if = 0 and 6,- = 2 if a,- = 1. Set f(l) = 1. f maps [0, 1] into the Cantor set, so m(/([0,
1])) = 0. It is easily shown that / is strictly increasing.
For each n, it is easy to obtain from / a function fn :In-> In such that jn is strictly

increasing and /z(fn(In)) = 0. Set
h(x) = fn(x) for x e (ne, (n + l)e].
There is no difficulty in proving that h has the desired properties.
Theorem 6. Let be an arbitrary junction on CQ = {{x, 0) | x e R}. Then there exists

a junction j on D° — {{x, y) | y > 0} such that j(z) = 0 almost everywhere and <p
is a boundary junction jor j.
Proof. For each positive integer n let hn be a strictly increasing function on R such

that y(hn(R)) = 0, and for every x, ]x — hn(x)j ~ 1/n. Let and En has linear measure
0. For each n, x let sn(x) be the line segment joining (hn(x), 1/n) and (An+1(a;), l/(n
+ 1)). Since
En is a subset of
hn(x) > hn(x’) x > xf => hn+1(x) > hn+1(x’\
we find that x 4= xf implies sH(x) C\ sn(xf) = 0. Since each sn(x) has one endpoint

in En and the other in En+1 , Lemma 11 shows that for each n
= 0.
x&R
Hence
M2(0 Usn(a:)) = 0. ’n=sl xtR •
Set
j(z) = £>(($, 0)), if z e sn(x) for some n,
f(z) = 0, if z is not in any sn(x).
j(z) = 0 almost everywhere. Let
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y(x) = {{x, 0>} U 0sn(x). 74 = 1
Since the endpoints of sn($) are at (An(z), 1/n) and (hn+1(x)j l/(n + 1)), and since

(hn(x), 1/n) —> (x, 0) as n —> oo, it is clear that y(x) is an arc at (x} 0). Obviously
lim j(z) = <p({xt 0)).
This proves the theorem.
Corollary. There exists a measurable function in D° having a nonmeasurable bound-

ary function.
6. Concluding remarks. Our theorem on boundary functions for continuous func-

tions could have been proved by a small modification of the argument in Section 4,
but the proof in Section 3 is shorter and neater.
The reader may wonder whether Theorem 4 holds true for functions taking values

on the Riemann sphere as well as for real-valued functions. The theorem does, in fact,
remain true in the sphere-valued case. If we regard the Riemann sphere 2 as a subset
of R3 and apply Theorem 4 to each component of f and <p, we find that <p is of Baire
class a + 1 with R3 as the universal range space. It is then easy to show by means
of Satz 2 in Banach’s paper16 that <p is of Baire class a + 1 with 2 regarded as the
universal range space. A similar procedure shows that Theorem 5 also remains true
for functions taking values on the Riemann sphere.
The results of Sections 2, 3 and 4 cannot be extended to three dimensions—at least

not in the most obvious way. We can show this as follows. Let K be an open cube in
R3 and let F be one face of K. If f is defined in A, then we say <p (defined on F) is
a boundary function for f provided that for each x e F there exists an arc y with one
endpoint at x such that y — {x} C K and
lim f(v) = (p(x). v—>® vzy
Lemma 13. Suppose that every point of F is an ambiguous point of the function f :

K —» R3. Then f has a nonmeasurable boundary function.
Proof. Let E be a nonmeasurable subset of F. Since each point of F is an ambiguous

point we can choose, for each x e F, two distinct points ^(x), <p2(x) e R3 such that
there exist arcs y{ at x with
lim f(p) = Pitx), (i = 1,2). v—*x vsy i
Let
<p(x) = <pi(o:), if x vE,
cp(x) ~ if x e F — E.
Then
<p(x) — ^(x) =0, if xtE,
<p(x) — Vi(x) 1 0, if x s F — E.
Therefore (<p — ^i)-1({0}) = E, so — <px is not a measurable function. Hence

either <p or <px is a nonmeasurable function. Since <p and <pY are both boundary
functions for /, the lemma is proved.

16 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
(1931) 283-295.
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P. T. Church17 has constructed an example of a homeomorphism / from K onto
K such that every point of F is an ambiguous point for f. By Lemma 13, f has a
nonmeasurable boundary function <p. Theorem 1 is therefore false in three dimensions.
Write f and <p in terms of their components; say / = (f i, f2, fa) and <p = , <?2, ^3).
Since <p is nonmeasurable, one of its components, say <?,- ,
is nonmeasurable. But is a boundary function for the continuous real-valued function

f,« , so Theorem 2 and Theorem 4 must be false in three dimensions.
References
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17 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
4 (1957) 155-156.
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Explanation by John D. Bullough
The author generalizes the result of McMillan (1966) to the effect that the set of

curvilinear convergence of a continuous function f from D into Z is of type F(sd). The
generalization considers f as a continuous function from D into a compact metric space
E. Topologizing the set of closed sets C(E) of E with the Hausdorff metric and letting
E be any closed set in C(E), it is shown that the set of all x ( C such that there is a
boundary path v at x with the cluster set of f along v contained in some set of E is
of type F(sd). Taking E to be the set of all singletons {y}, y ( E (which is closed in
C(Z)) McMillan’s theorem is obtained.
Various other corollaries are given by selecting appropriate closed sets E ( C(E).

Article by Ted
On a Boundary Property of Continuous Functions
T. J. Kaczynski
Let D be the open unit disk in the plane, and let C be its boundary, the unit circle.

If x is a point of C, then an arc at x is a simple arc y with one endpoint at x such that
y - {x} c D. If f is a function defined in D and taking values in a metric space K, then
the set of curvilinear convergence of f is
{x e C| there exists an arc y at x and there exists a point p e K such that lim f(z)

= p} .
Z —> X zey
J. E. McMillan proved that if f is a continuous function mapping D into the Riemann

sphere, then the set of curvilinear convergence of f is of type Fa$ [2, Theorem 5]. In

44

https://archive.org/download/the-mathematical-work-of-ted-kaczynski/5.%201966.%20On%20a%20Boundary%20Property%20of%20Continuous%20Functions.pdf
https://web.archive.org/web/20190815201940/http:/homepages.rpi.edu/%7Ebulloj/tjk/tjk3.html


this paper we shall provide a simpler proof of this theorem than McMillan’s, and we
shall give a generalization and point out some of its corollaries.
Notation. If S is a subset of a topological space, S denotes the closure and S* denotes

the interior of S. Of course, when we speak of the interior of a subset of the unit circle,
we mean the interior relative to the circle, not relative to the whole plane. Let K be a
metric space with metric p. If x0 e K and r > 0, then
S(r, x0) = {x e K| p(x, x0) < r} .
An arc of C will be called nondegenerate if and only if it contains more than one

point.
LEMMA 1. Let bea family of nondegenerate closed arcs of C. Then Uie^ I ” Uje/Z

I* countable.
Proof. Since UIe^r I* is open, we can write I* = Un Jn, where {Jn} is a countable

family of disjoint open arcs of C. If
X0 € U I - U I* , Ie# Ie#
then for some Io e #, x0 is an endpoint of Io. For some n, Iq c Jn, so that x0 e • But

x0 / Jn, so that x0 is an endpoint of Jn. Thus Uj I - Uj I* is contained in the set of all
endpoints of the various Jn; this proves the lemma. �
In what follows we shall repeatedly use Theorem 11.8 on page 119 in1 without

making explicit reference to it. By a cross-cut we shall always mean a cross-cut of D.
Suppose y is a cross-cut that does not pass through_the point 0. If V is the component
of D - y that does not contain 0, let L(y) = V Cl C. Then L(y) is a nondegenerate
closed arc of C.
Received February 8, 1966.

I
Suppose n is a domain contained in D - { 0}. Let r denote the family of all cross-cuts

y with y n D c n. Let
1(0) = U L(y), I0(n) = U L(y)* .
yE r yE r
Let ace (n) denote the set of all points on C that are accessible by arcs in n.
The following lemma is weaker than it could be, but there is no point in proving

more than we need.
LEMMA 2. The set ace (n) - I0(n) is countable.
Proof. By Lemma 1, I(n) - I0(n) is countable; therefore it will suffice to show that

ace (n) - I(n) is countable. If ace (n) has fewer than two points, we are done. Suppose,
on the other hand, that ace (n) has two or more points. If a E ace (n), then there exists
a’ E ace (0) with a’ =f. a. Let y, y’ be arcs at a, a’ , respectively, with
ynncn , y’n n cn.
Let p be the endpoint of y that lies in n, p^ the endpoint of y1 that lies in n. Let

y” c n be an arc joining p to p’ . The union of y, y’, and y11 is an arc o joining a to a’.

1 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
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By2, there exists a simple arc 01 co that joins a to a^. Clearly, 01 is a cross-cut with
01 n D c n and a, a^ e L(0 ’). Thus a e I(n), and so ace (n) c 1(0). •
LEMMA 3. Suppose 01 and Oz are domains contained in D - {O}. If
(1) IqCOj) A acc(O1) and Iq(Q2) A ace (Q2)
are not disjoint, then n1 and Oz are not disjoint.
Proof. We assume n1 and Oz are disjoint, and we derive a contradiction. Let a be

a point in both of the two sets (1). Let Yi be a cross-cut with Yi n D cni such that a
E L(yi)* (i = 1, 2). Let Ui and Vi be the components of D - Yi, and (to be specific),
let Ui be the component containing 0. Note that y1n D and y2n D are disjoint.
Suppose yi nD cVz and yz A D c Vj. Then, since yi n D c Ui, Ui has a point in

common with Vz. But O E u1 nUz, so that U 1 has a point in common with Uz also.
Since Ui is connected, this implies that Ui has a common point with Yz n D, which
contradicts the assumption that Yz nD cVp Therefore yi nD ^ V2 or Yz n D ^ Vi •
We conclude that either y 1 nD c U2 or y2 nD c U1 . By symmetry, we may assume
that Yz n D cUi.
It is possible to choose a point b E L(yi) * that is accessible by an arc in Oz, because

a is in the closure of ace (Oz). Let y be a simple arc joining b to a point of y4 n D,
such that y - { b} c Oz. Then y - { b} and yi are disjoint. Also, y — i_b} contains a
point of Ui (namely, the point where y meets y2 n D); therefore y - {b} c Ui . Hence
b e Ui. Since b e L{y 1 )*, this is a contradiction. •
THEOREM 1 (J. E. McMillan). Let K be a complete separable metric space, and

let f be a continuous function mapping D into K. Let
X = {x E CI there exists an arc y at x for which lim f(z) exists} . z^x
zEy

Then X is of type Fa $ .
Proof Let {pk}k=1 be a countable dense subset of K. Let {Q(n, be
a counting of all sets of the form
where 0 is a rational number. Let {U(n, m, k, £)}^=1 be a counting (with repetitions

allowed) of the components of
(We consider 0 to be a component of 0.) Let
A(n, m, k, £) = acc[U(n, m, k, £)].
Set
co co co co
Y= n u u u I0(U(n, m, k, £)) Cl A(n, m, k, £).
n=l m=l k=l f = 1
Since I0(U(n, m, k, £)) is open, it is of type Fa . It follows that Y is of type Fa<5 .
I claim that Y c X. Take any y e Y. For each n, choose m[n], k[n], f [n] with
(2) y € I0(U(n, m[n], k[n], f[n])) A A(n, m[n], k[n], £[n]) (n = 1, 2, 3, •••).

(1931) 283-295.
2 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,

4 (1957) 155-156.
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For convenience, set Un = U(n, m[n], k[n], f[n]). By (2) and Lemma 3, Un and Un+i
have some point zn in common. For each n, we can choose an arc yn c Un+i with one
endpoint at zn and the other at zn+1 . Then yn c Q(n + 1, m[n + 1]). Also,
and therefore
r r
P<Pk [n] ’ Pk [n+r] } P(Pk[n+i-l]’ Pk[n+i]) < < ^2’
Thus {pk[n]} is a Cauchy sequence and must converge to some point p g K. Because
rnC Un+1 C f’1(S(^iT>Pk[n+l])) and Pk[n]^P>
lim f(z) = p. It is possible that y is not a simple arc, but by3 we can replace y z->

y zG y
by a simple arc y’ c y. Thus y e X, and we have shown that Y c X.
Suppose x g X. Let y0 be an arc at x such that f approaches a limit p 1 along
y0. Take any n. Choose k with p’ g
pk j . Choose m so that x is in the
interior of Q(n, m) A C. Then y0 has a subarc yjj, with one endpoint at x, such

that
t’q - {x} c Q(n, m) n f-lfs/X pk) j .
Hence, for some f, x g acc[U(n, m, k, £)] = A(n, m, k, f). This shows that
00 00 00 00
Xc n u u u A(n, m, k, £).
n=l m=l k=l f = l
By Lemma 2, the set
A(n, m, k, J?) - I0(U(n, m, k, $.)) = A(n, m, k, £) - [l0(U(n, m, k, £)) Cl A(n, m,

k, £)] is countable. It follows by a routine argument that
A U A(n, m, k, jO - A U [l0(U(n, m, k, £)) A A(n, m, k, I) ] n m,k,£ n m,k,£
is countable. Because
A U [lQ(U(n, m, k, £)) A A(n, m, k, £)] = Y c X C A U1 A(n, m, k, £), n m,k,j£

n m,k,f
the set X - Y is countable, and therefore X is of type Fa 5 . �
Before stating our generalization of the foregoing theorem, we must say a few words

about spaces of closed sets. If K is a bounded metric space with metric p, let ^(K)
denote the set of all nonempty closed subsets of K. Hausdorff [1, page 146] defined a
metric p on MK) by setting
p(A, B) = max{ sup dist(a, B), sup dist(b, A)} ,
a GA b€B
where dist(x, E) denotes inf p(x, e). If K is compact, then $?(K) is a compact
e € E
metric space with p as metric [1, page 150].
If f maps D into K and if y is an arc at a point x e C, we let C(f, y) denote the

cluster set of f along y; that is, we write

3 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
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C(f, y) = {p 6 K| there exists a sequence {zn} c y AD such that zn -» x and f (zn)
—> p} .
THEOREM 2. Let K be a compact metric space, and let 8 be a closed subset of

^(K). Let f: D —>K be a continuous function. Then
{x e c| there exists an arc y at x and there exists
E e 8 such that C(f, y) c E}
is a set of type Fa $ .
Proof. If s > 0 and E e r^(K), let
Z/?(8, E) = {a e k| there exists be E with p(a, b) < 8} .
Note that <^(8, E) is open and that
F e ^(K), p(E, F) < 8 =>Fc <^(8, E).
Let {P(k)}k=1 be a countable dense subset of 8 (such a subset exists, because every

compact metric space is separable). Let
X = {x e c| there exist an arc y at x and an E e 8
such that C(f, y) c E} .
r t 00
Let {Q(n, m)}m=j be defined as in the proof of the preceding theorem. Let {U(n,

m, k, 4)}£=i be a counting (with repetitions allowed) of the components of
p<k>)) n Q(n> m>-
Let A(n, m, k, £) = acc[U(n, m, k, £)], and set
CO CO CO OO
Y= n u u u I0(U(n, m, k, £)) n A(n, m, k, f).
n = l m=l k = l £ = 1
Since I0(U(n, m, k, £)) is open, it is of type FQ . It follows that Y is of type F^ .
I claim that Y c X. Take any y e Y. For each n, choose m[n], k[n], f[n] so that
(3) y e I0(U(n, m[n], k[n], £ [n])) n A(n, m[n], k[n], £[n]).
Set Un = U(n, m[n], k[n], £ [n]). Since 8 is compact, there exist a P € 8 and some

strictly ascending sequence {n;}°°=i of natural numbers such that
J J
P(k[nj]) 7 P. J J
By (3) and Lemma 3, Un> and Un. have some point Zj in common. For each j,’ J i
choose an arc yj c with one endpoint at Zj and the other at Zj+1. Then
7j c Q(nj+1, m[nj+1]). Also,
y e A(nj+1, m[nj+1], k[nj+1], £[nj+1]) c U c Q(nj+1, m[nj+1]), J
and therefore each point of y. has distance less than ————– from y. Now
J Hj + l
2tt + 1 | |°°

0 as j —> therefore, if we set y = {y} U Ui=i , then y is an arc with nj+l
J J

4 (1957) 155-156.
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one endpoint at y.
I claim that C(f, y) c P. Take any p e C(f, y). There exists a sequence {ws}^=1 in

y - {y} such that ws y and f(ws) p. Let e be an arbitrary positive number. Choose j0
so that p(P(k[nj]), P) < e/3 for all j > j0 . Choose so that j > jj implies l/nj+i < e/3.
We can choose an s such that ws e y^ for some i > j0 , jj and such that
(4) p(f(w ), p) <-L
o
Then
f(ws) e f(y.) c f(Un.H) c P(k[ni+1])) ,
and therefore we can choose a point q e P(k[ni+1]) with
(5)
P(f(w ), q) < — » n. �
E
3*

Moreover, because p(P(k[ni+1]), P) < e/3, there exists some q’ € P with
(6)
p(q, q’) <
Together, (4), (5), and (6) show that p(p, q’) < e. Since P is closed and e is arbitrary,

this proves that p € P. Hence C(f, y) c P e 8. By4, we can if necessary replace y by a
simple arc y1 c y; it follows that y 6 X. Thus Y c X.
Now suppose x e X. Choose an arc y0 at x such that C(f, y0) c Po for some Po e 8.

Take any n. Choose k with p(P0, P(k)) < 1/n. Then
poc^(^ w) >
hence C(f, y0) c P(k) j .
Choose m so that x is in the interior of Q(n, m) A C.
If for each natural number t there exists a point z’t e y0 A S x j AD with p(k))) ’then
f(z’) e K -S (i P(k)\,
and since K - SP ( P(k) j is compact, there exist some a e K - SP P(k) j and a

subsequence {f(z’ )}.°\ such that f(z’ ) =-> a. But then a € C(f, y0), contrary to ti �
\ ri
the relation C(f, y0) c , P(k) ) . We conclude that there exists a natural number t

for which
y0 n s(|,x) o C P(k)) ) •
It follows that y0 has a subarc y^ with one endpoint at x such that
y’Q- {x} c P(k)) ) nQ(n, m).
Hence there exists an £ such that
x e acc [U(n, m, k, £)] = A(n, m, k, £).
This shows that co oo oo co xcn u u uA(n, m, k, £). n=l m = l k=l £ = 1

4 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
4 (1957) 155-156.
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By Lemma 2, the set
A(n, m, k, £) - I0(U(n, m, k, £)) = A(n, m, k, J?) - [l0(U(n, m, k, £)) A A(n, m, k,

{)] is countable. It follows easily that
A U A(n, m, k, £) - A U [l0(U(n, m, k, £)) A A(n, m, k, £)] n m,k,£ n m,k,£
is countable. Since
A U [I0(U(n, m, k, £)) A A(n, m, k, 4)] = Y c X c A U A(n, m, k, £), n m,k,£ n

m,k,£
X - Y must be countable. Thus X is the union of an Fa$ -set and a countable set, ,

and hence it is of type Fa $ . �
In each of the following four corollaries, let f denote a continuous function mapping

D into the Riemann sphere.
COROLLARY 1 (J. E. McMillan). Let E be a closed subset of the Riemann sphere.

Then the set
{x e C | there exist an arc y at x and a point p e E such that lim f(z) = p} z —>x

z € y
is of type Fa 6 .
COROLLARY 2. Suppose d > 0. Then the set
{x e C| there exists an arc y at x such that [diameter C(f, y)] < d}
is of type FQ 6 .
COROLLARY 3. Let E be a closed subset of the Riemann sphere. Then the set
{x e C | there exists an arc y at x with C(f, y) c e}
is of type Fa 6 .
COROLLARY 4. The set
{x e C| there exists an arc y at x such that C(f, y) is an arc of a great circle }
is of type FQ 6 .
We can obtain all these corollaries by taking 8 to be a suitable family of closed sets

and applying Theorem 2. To prove Corollary 4, we need the fact that C(f, y) is always
connected. One could go on listing such corollaries ad infinitum, but we refrain.
It is interesting to note that in Corollary 1 it is not necessary to assume that E is

closed. By combining Corollary 1 with Theorem 6 of5, one can prove that the conclusion
of Corollary 1 holds even if E is merely assumed to be of type .
REFERENCES
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Leipzig, 1927.
2. J. E. McMillan, Boundary properties of functions continuous in a disc, Michigan

Math. J. 13 (1966), 299-312.
3. M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge

University Press, 1961.
4. H. Tietze, Uber stetige Kurven, Jordansche Kurvenbogen undgeschlossene Jor-

dansche Kurven, Math. Z. 5 (1919), 284-291.

5 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,

50



The University of Michigan

J., 8 (1961) 201-207.

51



6. 1967 - PhD thesis at University
of Michigan - Boundary Functions
Original PDF: 6. 1967 - PhD thesis at University of Michigan - Boundary Func-

tions.pdf
BOUNDARY FUNCTIONS
KACZYNSKI, THEODORE JOHN
ProQuest Dissertations and Theses; 1967; ProQuest
This dissertation has been -� — —
microfilmed exactly as received 67-17,790
KACZYNSKI, Theodore John, 1942- BOUNDARY FUNCTIONS. -
The University of Michigan, Ph.D„ 1967 Mathematics
University Microfilms, Inc., Ann Arbor, Michigan

BOUNDARY-FUNCTIONS
by
Theodore John Kaczynski
A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the University of Michigan
1967
Doctoral Committee:
Professor Allen L. Shields
Assistant Professor Peter L. Duren
Associate Professor Donald J. Livingstone Professor Maxwell O. Reade
Professor Chia-Shwi Yiih
BOUNDARY FUNCTIONS
By Theodore John Kacijnski

Abstract
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lim f(z) = t(p).
z -> p
z ( v
The set of curvilinear convergence of f is the largest set on which a boundary function

for f can be defined; in other words, it is the set of all points p ( X such that there
exists an arc at p along which f approaches a limit. A theorem of J.E. McMillan states
that if f is a continuous function mapping H into the Riemann sphere, then the set
of curvilinear convergence of F is of type F(sd). In the first of two chapters of this
dissertation we give a more direct proof of this result than McMillan’s, and we prove,
conversely, that if A is a set of type F(sd) in X, then there exists a bounded continuous
complex-valued function in H having A as its set of curvilinear convergence. Next, we
prove that a boundary function for a continuous function can always be made into a
function of Baire class 1 by changing its values on a countable set of points. Conversely,
we show that if t is a function mapping a set E ( X into the Riemann sphere, and if
t can be made into a function of Baire class 1 by changing its values on a countable
set, then there exists a continuous function in H having t as a boundary function.
(This is a slight generalization of a theorem of Bagemihl and Piranian.) In the second
chapter we prove that a boundary function for a function of Baire class e > 1 in H
is of Baire class at most e + 1. It follows from this that a boundary function for a
Borel-measurable function is always Borel-measurable, but we show that a boundary
function for a Lebesgue-measurable function need not be Lebesgue-measurable. The
dissertation concludes with a list of problems remaining to be solved.
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5. 62

INTRODUCTION
1. Preliminary Remarks
Let H denote the upper half-plane, and let X denote its frontier, the x-axis. If x£X,

then by an arc at x we mean a simple / ———————————————–
arc y with one endpoint at x such that y - Suppose that f
is a function mapping H into some metric space Y. If E is any subset
I of X, we will say that a function <p:E ->Y is a boundary function for f if, and

only if, for each x€E there exists an arc Y at x such that
lim f(z) = ip (x) . z x z € y
The study of boundary functions in this degree of generality was initiated by

Bagemihl and Piranran1. A function defined in H may have more than one bound-
ary function defined on a given set E S X, but it follows from a famous theorem of
Bagemihl2 that any two such boundary functions differ on at most a countable set of
points.
If f is defined in H, then the set of curvilinear convergence of f is the set of all points

x£ X such that there exists some arc alj x along which f approaches a limit.. Evidently,
this is the largest set on which a boundary function for f can be defined.
J. E. McMillan [10] discovered that the set of curvilinear convergence of a continuous

function is always of type F and in this paper we show that every set of type in X is the
set of curvilinear convergence of some continuous function. Next, we show that if is a
function defined on a subset E of X, then <p is a boundary function for some continuous
function if and only if if can be made into a function of the first Baire class by changing
its values on at most a countable set of points. (This solves a problem of Bagemihl
and Piranian [2, Problem ,1].) We then consider functions that are not assumed to be
continuous, and we prove that a boundary function for a function of Baire class 5 1 is of
Baire class at most 5+1 (thus proving another conjecture of Bagemihl and Piranian3).
It follows from this that a boundary function for a Borel-measurable function is always
Borel-measurable, and in the last section we show that a boundary function for a
Lebesgue-measurable function need not be Lebesgue-measurable.
Most of the results appearing here have already been published ([8] and [9]). At the

time I published these papers I did not expect to have to make use of this material for
a dissertation.

1 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,
J., 8 (1961) 201-207.

2 F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat, Acad, Sci. U. S. A.> 4
(1955) 379-382.

3 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,
J., 8 (1961) 201-207.
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2. Notation
R will denote the field of real numbers, n
R will denote n-dimensional Euclidean space.
Points in Rn will be written in the form {x.,…, x \ rather than (Xp..„ xn) (to avoid

confusion with open intervals of real numbers in the case n = 2).
If v€Rn, then |v| denotes the length of the vector v. 2*3’2
S denotes {vgR : |v| = 1}. Sz will be referred to as the Riemann sphere.
. Let
H = ’ { <x,y>6 R

4

: y > 0} ? 1
Hn = { <x,y>£RZ : £ > y > 0} X = { <x,0>: x€R} < Xn= {<x4> : x€R} •
We consider X as being identical with R. Thus, for example, <x,0>< <x’ ,0^ means

x £ x’, and for p, q € X, the notations [p,q], [p,q), etc. refer to the obvious intervals
on X.
If E is a subset of a topological space, then E” denotes the i i
it closure of E, E denotes the interior of E, and E’ denotes the
* complement of E. Of course, if E is a subset of X, then E means the interior of E

relative to X, not relative to the whole plane. In Section 7, we often denote two line
segments by s and s’. Since the prime notation is never used for complementation in
that section, there is no danger of confusing s’ with the complement of s.
2
If f is a function defined in a subset of R , then f(x,y) means f(<x,y^). Thus we

write f(z) for z£R and f(x,y) for x,y£R interchangeably. 1 1

3. Baire Functions
In this section we review the main facts concerning Borel sets and Baire functions,

and we prove some results that will be needed later.
If C is any family of sets, let Cg be the family of all sets that can be written as a

countable intersection of members of C, and let be the family of all sets that can be
written as a countable union of members of C.
Suppose M is a metrizable topological space. Let p\m) be the family of all open

subsets of M and let q\m) be the family of all closed subsets of M. If ? is an ordinal
number greater than 1, let
P5(M) = (^Jq^(M)) n<C
QC(M) = (UPnOT)s n<€ 9

For any C, E € Q?(M) <=>E’ 6 P?(M) .
For any subset L of M. E€ P^(L) (respectively Q^(L)) if and 1 F F
only if there exists a set D€ P (M) (respectively Q (M)) such that e = dal.
P^(M) and Q^(M) are closed under finite unions and finite intersections. P^(M) is

closed under countable unions and Q^(M) is closed under countable intersections.
If n<5, then Pn(M) U Qn(M) P?(M)A Q?(M).
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Let F$(M) be the class of all F^ sets of M, and let Gg(M) be the class of all G$
sets of M.
2 2
P (M) = F (M) and Q (M) ’ = G$(M).
Let Y be a metric space. For any family C of subsets of M we will say that a function

f : M -> Y is of class (C) if and only if f”\u)€C for every open set U — Y.
The following definition of the Baire classes is somewhat different from the classical

definition, but it seems more.convenient for our purposes. A function f : M -> Y is said
to be of Baire class 0(M, Y) if and only if it is continuous. If 5 is an ordinal number
greater than or equal to 1, then f is said to be of Baire class • 00
£J(M, Y) if and only if there exists a sequence of functions mapping M into Y, f

being of Baire class nn(M,Y) for some nn < £, such that f �* f pointwise.
If f : M + Y is of Baire class £(M, Y) and if L is a subset of M, then f|T is o’f Baire

class 5(L, Y).
If K is a metric space, if g : K •* M is continuous, and if � f : M -> Y is of Baire

class ?(M, Y), then the composite function f og is of Baire class €(K, Y).
If Y is separable and if f : M -> Y is of Baire class £(M, Y), then f is of class

(P^+\m)) [4, page 294].
If Y is separable and arcwise connected, if g 1, and if f : M-> Y is of class (P^+\m)),

then f is of Baire class ?(M, Y)5.
For any 5, if f : M -> R is of class (P^+\m)), then f is of Baire class £(M, R)6.
If l€Q^+\m) and f:L �* R is of Baire class 5(L, R), then f can be extended to a

function ? : M + R of Baire class 5 CM, R)7.
We say that a function f : M •* R is Borel measurable if, and only if, for every open

set u£r, f’^CU) is a member of the o-ring of subsets of M generated by the open sets.
If f : M �> R is of some Baire class ?CM, R), then f is Borel- measurable, and,

conversely, if f : M -> R is Borel-measurable, then f is of Baire class £i(M, R) for some
countable ordinal number 5 [7, page 294].
The proofs of Lemmas 1 through 6 are based on standard techniques in the study

of Baire functions.
Lemma 1. Let M be a metric space, and let E and F be two F^ sets in M. Then

there exist two disjoint F$ sets A and B £ M such that
E-FGA and F - E Q B.
00 oo
Proof. Let E = E and F = I J F , where E and F are closed, n n n n
n=l n=l

5 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
4 (1957) 155-156.

6 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,
1961.

7 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,
1961.
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Then
Bn, Fn £ fo(m)a g6(M).
It is easy to check that F^fM) AG^fM) is an algebra (i.e., is closed under comple-

mentation, finite unions, and finite intersections). We inductively define a sequence of
pairs of sets (An, Bn) as follows. Let
Ax = Ex , Bx = Fx A A’ .
For n > 1, let
n-1 n
A = E n C\ B! , B = F nfl A! . n nn ’ n n” j
By induction, Ar, Bn € F$(M) A G$(M). Let , CO 00
A =U An , B =U B .
n=l n=l
Then A and B are F sets. Notice that
(j B - £ F O A. g e ,
j=l 3 j=l 3
from which it follows that n-l ,
A = E a ( U B.) O E A F’ , n n z v — n *
1=1 J
and n ,
Bn � y 2 PnAB’ •
3=1.
Therefore
00
A 5 LJ CEnA F’) = E - F n=l
and
CO
B “ U CFnAE’) = F - E. n=l
It only remains to show that A A B = <j>. Suppose x 6 A A B. Choose
£, m with x £ A and x € B . If £ > m, then £ > 1, so that
J6 in
Hence x € B’ —a contradiction. On the other hand, if St, < m, then m —
m
f.nA A! a a; , 1=1 J
so that x€£A} —another contradiction. We conclude that AAB =
If E is a subset of a space M, we let xE denote the characteristic function of E.
Lemma 2. Let L be a. subset of a metric space M, and suppose that
co
E G F^CL) /A GgfL). Then there exists a sequence {fn}n_^-°f continuous real-

valued functions on M such that f^ -> xE pointwise on L.
Proof. Both E and L - E are in F^CL), so there exist sets E^, F^ £ F^fM) such

that
E = E^a L and . L - E = F^n L.
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By Lemma 1, there exist A, B € F$(M) such that A AB = <|>and
E^ - F^ G a, F^ - E^ G B. We have
E = AAL and . L - E = BAL.
00,00..
Write A =LR. b-U. ®n* where A^, are closed and An ^n+i’ n=l n=l
B^ B for each n. By Urysohn’s Lemma there exists a continuous function fn : M

-»� [0,1] such that
f fx) = 1 when x £ A
n1, J • n
f f x) = 0 when x £ B .
n n
CO
{fn}n=1 is the desired sequence.®
Lemma 3. Let L be a subset of a metric space M, f : L-> R a function
of class (Fa(L)) that takes only finitely many different values.
Then there exists a sequence {f } .of continuous real-valued n n n=l
functions on M such that fn -> f pointwise on L.
Proof. From Banach’s Hilfssatz 38, we see that there exist real
numbers an,…, a and sets
1 ;q .
Ep…, Eq€Fo(L)r»G6(L)
such that
. q
f = E a. Xn •
. . i E.
J=1 J J
� 1 00
If we choose for each j a sequence {fnJJn_^ of continuous real-valued.
functions on M such that f -> xc pointwise on L, and if we set n _ n c j
� 00
then is the desired sequence.®
Lemma- 4. Let L be a metric space, f a bounded real-valued function
• . co
on L of Baire class 1(L, R). Then there exists a sequence tfn^n_j of real-valued

functions on L converging uniformly to f, such that each f is of class (F^fL)) and takes
only finitely many different values. ’
Proof, f is of class (F^CL)) and the range of f is totally bounded, so an obvious

modification of the proof of Banach’s Hilfssatz 49 gives the desired result.®
8 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,

4 (1957) 155-156.
9 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,

4 (1957) 155-156.
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Lemma 5. Let M be a metric space, L a subset of M, f : L + Ra /
’ � co
function of Baire class 1(L, R). Then there exists a sequence
of continuous real-valued functions on M such that f + f pointwise on L.
Proof. We first* prove the lemma under the assumption that f is bounded. For any

bounded real-valued function h, let •
Uh II = sup { |h(x) | : x£ domain of h} .
By Lemma 4 we can choose, for each n, a function gri : L + Rof class (F^CL)) such

that gn takes only finitely many different values and
Let
hl «1 � hn = - «n-l for ” >K
Then, for ri > 1,
UM <sup>=</sup> - <sup>f + f</sup> - «n-lll
i it it *
Each h n
values,
is of class (Fo(L)) and takes only finitely many different
* *1 00
so by Lemma 3 we can choose (for eachn) a sequence {hnJ}^_^
of continuous functions on M such that h^ hn pointwise on L.
Set
k^fx) = - || hn|| if hnJ’(x) <_ - || hjl
knj« = HhnH i£ h

n
jW> Hhnll

knj W = hnj Cx) i£ ” II hnll < hnj (x) < H hnH *
Then is continuous, k^ j- hn pointwise on L, and || k^ ||’ £ II ^nll < —. Therefore,

if we set 2n“2 CO
f. = Z k j ,
J i n
J n=l
then the series converges uniformly and fj is continuous on M. We claim that ff

pointwise on L. Take any x £ L and any e > 0. Choose m large enough so that —< 4
e* For each n> choose j (n) so 2m that

j - M*)l <^1-
Let i = max {j (1) ,…, j (m) }. Then j >_ iQ implies that
|f (x) - f(x) | < |f.(x) - E k j(x)| + | E 3 3 n=l n n=l
m
+ I z n=l
“ -ii m
< Z II kn3 II + E |kn3(x) -hn(x)l + || gm n=m+l n=l
n m , n
< —-iy + ( E —i=-)|+ —= e.
< om-2 k . „n+l ’ 3 _m 3
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z n=l 2 2
Thus f. fx) �* f(x) for each x € L, and the lemma
m k \x) - E h (x)| n=l
hn« - £(X)|
- f II
is proved for bounded J J f. __ _
If f is not bounded, let
g(x) = arctan f(x)
Then - < gW < y for every x € L, and g is of Baire class 1(L, R),
00
so there exists a sequence {gn^n_j °f continuous functions on M converging to g

pointwise on L. Set
hnM = -14 if . gn(xj < - 41
hn(x) =4-1 if gn(x)> 1-1
hn(x) = . ^(x) if . ’ . 1< ^(x) < ’ . 1 .
71 7T
Then hn is continuous on M, - < hn(x) < and Ir �* g pointwise on
L. Let f (x) = tan h (x). Then f is continuous on M and f -> f n n n n
pointwise on L.l ’
Lemma 6. If L is a subset of a metric space M and f : L �> Rm is a function, then

the following are equivalent.
(i) f- is of Baire class 1(L, Rm) .
(ii) f is of class (F^fL)). 00
(iii) There exists a sequence <^n^n—j of continuous functions mapping M into Rm

such that f •* f pointwise on L.
This lemma is an easy consequence of Lemma 5.
3
Definition. Let q be any point of R lying inside the bounded open 2 3 2
domain determined by S . By the q-projection of R - {q} onto S we
mean the function P^ defined as follows. If a is any point of 3
R - {q}, let I be the unique ray, having its endpoint at q, that
passes through a, and let P^(a) be the intersection point of I with 2 3 2
S . Pq is a continuous mapping of R {q} onto S that fixes every 2
point of S .
Theorem 1. Let L be an arbitrary subset of R . Then a function 2 2
f : L S is of Baire class 1(L, S ) if and only if it is of class (Fa(L)).
Proof. Assume that f : L -> S is of class (Fo(L)). S $s R , so by
Lemma 6 there exists a sequence of continuous functions mapping
2 3
R into R such that f -> f pointwise on L. Let
An </sup> V<sup>1 C {v € r3 :</sup> l<sup>V</sup>> <sup> 7}
11 11 “
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Bn = V1 C {v€ r3 : M ’ S 7} )
11 11
’ Cn = V1 ( {vg : H
11 11 L*
Let f ° = fn|^ • According to [5, Lemma 2.9, page 299], f^0 can be n 2 3 1
extended to a continuous function gn : R -> {v €. R : |v| = y}. 2 3
Define h^ : R -> R - {0} by setting
hnCx) = gn(x) if x 6 Bn
hn(x) = fn(x) if x € Cn.
Since Bn, are closed, hn is continuous, and it is easy to verify that hn(x] �* f(x) for

each xG L. Let kn : R^ •* be the composite
function P o h . Then k is continuous, and for each x£L, o n n
2
kn(x) -> Po(f(x)) = f(x). Thus f is of Baire class 1(L, S
Definition. Let M and Y be metric spaces. Then a function f : M Y
is said to be of honorary Baire class 2(M, Y) if and only if there exists a countable

set N^m and a function g : M �> Y of Baire class
1(M, Y) such that f(x) = g(x) for every x €. M - N.
2
Theorem 2. Let L be an arbitrary subset of R and let Y be either
2
the real line, a finite-dimensional Euclidean space, or S . Then a function f : L •*

Y is of honorary Baire class 2(L, Y) if and only if there exists a countable set N C L
such that f|is of class (Fq(L-N)).
Proof. Suppose that f : L •* Y is of honorary Baire class 2(L, Y). Then there exists

g : L �> Y of Baire class 1(L, Y) and a countable set N£L such that f|L N = glL_N*
But gI£_N is of class (Fo(L - N)). Conversely, suppose that f|^ is of class (Fo(L - N)),
where N is countable. We must show that f is of honorary Baire class 2(L, Y). First
consider the case where Y = Rm. Write
f(x) = Xf^x), f2(x), …,
Then f^|^ is of class (F^CL - N)) (i=l,…, m), and it follows that fflb jq is of Baire

class 1(L - N,*R). Since L - N €Gg(L), we can extend f. |T to a function g. : L -> R
of Baire class 1(L, R) . If we set g(x) = <^g^(x),…, gm(x)} , then g is of Baire class
1(L, Rm) and g(x) = fCx) for x € L - N, so we have the desired result.
2 2 3
Now consider the case where Y = S . Since SCR, there 3 exists, as we have just

shown, a function g : L �* R of Baire class 3 2
1(L, R ) such that g(x) .= f(x) for all x € L - N. Then g(L) - S is countable, so

there exists some point q in the bounded open domain
determined by_S such that q(£ g(L) . Let h be the
2
P o g. Then h maps L into S , and for each x £ L 4
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h(x)
P.(gM) = P (f(x)) 4 4
composite function “ N, f(x).
2
If (JC S is open, then

h-1(U)
-1(P ”^U)) € F CL) ,

so h is of class (F (L)) . By Theorem 1, h is of Baire class
2 M
1(L, S ), so we have the desired result.®

CHAPTER I. BOUNDARY FUNCTIONS FOR
CONTINUOUS FUNCTIONS
If r is a positive number and.if yQ is a point of a metric space Y having metric p,

then
S(r, Yo) denotes ’ {y £ Y : p(y, yj < ri.
We will repeatedly make use of Theorem 11.8 on page 119 in [11] without making

explicit reference to it. This theorem states that if D is a Jordan domain in R or in R
U {“}, if y is the frontier of D, and if a is a cross-cut in D whose endpoints divide y into
arcs y^ and y£, then D-a has two components, and the frontiers of these components
are respectively a u y1 and a u (The term cross-cut is defined on page 118 in [11].)

4. Domain of the Boundary Function
Definition. If f is a function mapping into a metric space Y, then ‘ the set of curvi-

linear convergence of f is defined to be
{x € X : there exists an arc y at x and there exists y € Y such that lim f(z) = y}.

z ->x zg y
J. E. McMillan [10] proved that for suitable spaces Y, the set of curvilinear conver-

gence of a continuous function is always of type Ftffi . We- ®ive a more direct proof of
this result than McMillan’s.
(This proof can be modified to give a more general result; see [9].)
. 15
i i t I I 16 �
* An interval of X will be called riondegenerate if and only if !
it contains more than one point. �
Suppose y is a cross-cut of H. If V is the bounded component
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of H - y, let L(y) = V f|X. Then L(y) = [c, d], where c and d are the
• - J endpoints of y and c < d. Suppose Q is a domain contained in H. Let r denote

the family of all cross-cuts y of H for which y H C fl, and let
1(8) = U L(y)*. Y^r
Let acc(fl) denote the set of all points on X that are accessible by arcs in fl.
Lemma 7. Assum^ that acc (fl) is nonempty. Let a be the infimum of acc (fl) and

let b be the supremum of acc (fl). Then
I (fl) = (a, b) .
Proof. Suppose x€.I(fl). Let y be a cross-cut of H such that ’it *
Y fs H £ fl and x € L(y) • L(y) = [c, d], where c and d are the endpoints of y and

c < d. It is evident that c and d are in acc(fl), so a £ c < x < d £ b, and x € (a, b).
Conversely, suppose x* (a., b) • Then there exist points c’, d’ € acc(fl) with c’ < x’
< d’. Since fl is arcwise connected, it is easy to show that there exists a crosscut y’ of
H, with y’^HSa, having c’, d’ as its endpoints. But then x’ € (c’, d’) = L(y’) , so x’ €
I(fl).�
Lemma 8. If fl., and fl_ are domains contained in H, and if X M
(1) I (fl) A acc(flj) and I(fl2) H acc(fl2)
are.not disjoint, then and Q2 are.not disjoint.
Proof. We assume that and fi2 are disjoint and derive a contradic
tion. Let a be a point in both of the two sets (1). Let y^ be a � cross-cut of H, with

A such that a g L(y^) (i = 1, 2). Let
IL and AL be the components of H - y^, where is the bounded component. Observe

that y^ A H and y2 /’Mi are disjoint.
Suppose yj H H C v2 and y2 AH G V^. Then, since y^AH $Up has a point in

common with V2« But, since U.^ is unbounded, U.^ cannot be contained in V2, so
must have a point in common with y2 nH. This contradicts the assumption that y2 A
H £Vp so we conclude that either y^ A H^V2 or y2 AH^Vj. Hence, either y^ A H U2
or y2 A H By symmetry, we may assume that
y2 HH$Ur
fi2 does not meet y^, and fi2 does meet U^ (because y2 A H S U-i A ft?) > so fi2 C

U^. Since a € acc(fi2), there exists a point b € L(yp such that b € acc(ft2). But then
b € fi2£Up and this is * impossible because the frontier of U^ is disjoint from L(y^)
. � Theorem 3 (J. E. McMillan). Let Y be a complete separable metric space and let
f : H -> Y be a continuous function. Then the set of curvilinear convergence of f is of
type F* .
Proof. Let {pv}v”-. be a countable dense subset’of Y. Let {Q(n, m)} ” K m=l
be a counting of all sets of the form
’ { <x, y>: 0 < y < and r < t < r + i-}
where r is a rational number. Let’{U(n, m, k, £)} “ be a counting 1
(with repetitions allowed) of the components of
i •
pk))n Q(n, m) .
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(We consider | to be a component of <j>.) Let
A(n, m, k, &) = acc[U(n, m, k, £)] .
Set
CO CO CO • CO
»• n u u u I(U(n, m, k, $,)) n A(n, m, k, £).
n=l m=l k=l £=1
Since I(U(n, m, k, &)) is open in X it is of type F . It follows that
O’
B is of type F . Let C denote the set of curvilinear convergence o 6
of f. I claim that B $C. Take any b <B. For each n, choose m[n],
k[n], £[n] with I
(2) b € I(U(n, m[n], k[n], a[n])) A A(n, m[n], k[n], £[n])
(n = 1, 2, 3,…).
For convenience, set Un = U(n, m[n], k[n], £[n]). By (2) and Lemma 8,
U and U . have some point z in common. For each n, we can choose n n+1 n
an arc yT i - Un+1 with one endpoint at zn and the other at zn+-^« Then ynCQ(n+l,

m[n+l]). Also,
b € A(n+1, m[n+l], k[n+l], £[n+l]) S=Un+1 Q(n+1, m[n+l]),
2 and therefore each point of yn has distance less than —from b.
2 l”l
—->0 as n ->«; hence, if we set y =’ {b} U yn> then y’is an arc n=l
with one endpoint at b.
Since U and U , have a point in common, n n+1 r ’
-11 -11
£ (StJ? Pk[n]» and £ (S<JST- Pk[n+1]»
have a common point, and hence ,
SC3P pk[np and SC3irT’ pk[n+i:P z z
have a common point. Therefore, if p is the metric on Y, then
t
pCpk[n]’ Pk[n+lp - 9n +

9n+r < 9n-l *
and therefore
f _ y 1 1
pCpk[n]’ Pk[n+rp - p(pk[n+i-l]’ Pk[n+ip <

2n+i-2 x ’
Thus {pk[-np is a Cauchy sequence and must’ converge to some point p € Y. Since
vnSVlSf’1(s(^r> Pk{ntl]” ”d
pk[n] ;p-
lim f(z) = p. It is possible that y is not a simple arc, but Z-*b
z€Y according to [12] we can replace y by a simple arc
y’ C y. Thus b € C, and.we have shown that B^C.
Suppose c € C. Let yQ be an arc at c such that f approaches a limit p’ along yQ.

Take any n. Choose-k with p’ € Pk) • Choose m so that c is in the interior of Q[h, m)
A X. Then yQ has a subarc yQ’, with one endpoint at c, such that
Yo’ - {c} S Q(n, m) n f”1CS(~, pkB .
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Hence, for some £, c £ acc[U(n, m, k, £)] = A(n, m, k, s.) . This
shows that
CO CO 00 co
csQUUUA(n, m, k, £) n=l* m£l k=l «=1
It is easy to deduce from Lemma 7 that the set
A(n, m, k, £) - I(U(n, m, k, £)) = . . . . . . . . . . .
A(n, m, k, £) - [I(U(n, m, k, £))nA(n5 m, k, £)]
contains at most two points. It follows by a routine argument that
A(n, m, k, £) - k-J [I(U(n, m, k, £)) n A(n, m, k, £)] n m,k,£ n m}k,£
is countable. Since
[I(U(n, m, k, A)) A A(n,’ in,” k, £’)] = B^c n m,k,£
n m,k,£
C - B is countable, and therefore C is of type F g. B
Next we will show that the foregoing theorem is as strong as possible, in this sense: if

A is any set of type F $ contained in X, then there exists a bounded continuous complex-
valued function f defined in H such that A is the set of curvilinear convergence of f.
The proof is unfortunately quite long. .
Definition. Let E^ and E2 be two sets on the real line. A point p on the real line

will be called a splitting point for E^ and E? if either
Xj £ p for all xx £ E^ and p £ x? for all x2 G E2 or x2 £ p for all x2 € E2 p £ x^

f°r a*1 xi € E^.
We will say that two sets E^ and E2 split, or that E^ splits with E2, if and only if

there exists a splitting point for E^ and E2.
• co
Lemma 9. Let E be an set in R. Then there is a sequence {En}n_^
of sets such that
(i) E is bounded and closed n
(ii) if n m, then either En and E^ are disjoint or En and
Em split
(ifi)
Proof. We can
n, and .
CO write E = I J A where n=l
A is closed, A CA. for all n n — n+1
Observe that if I is any open interval, then there exists a
CO
countable family {J } .of bounded closed intervals such that n n=l 00
n m J and J split, and I = J^. Since any open set of
n=l
real numbers is a countable disjoint union of open intervals, it
00
follows that for any open U there exists a countable family H J
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of bounded closed intervals
00
such that n i m I and T n
I split, and m r ’
n=l
’ r Ih 00

For each n, let {ipj_^ vals such that j k ZZ^ and
be a family of bounded 00
I? split, and A = IJ j=l
closed inter
im. Let J
IF = {Ap U {l“ n An+1 : n = 1, 2,…; j = 1, 2,…}.
Then^7 is a countable family of bounded closed sets, and CO 00
E � - A1WU (An+1AAA)
n=l n=l
= i”) = A1UC{
n=l ]=1 J J J
�IK-
/ J*
Let and F2 be any two distinct members of . If either F^ or F2 is A^ = $, then F^

and F2 are automatically disjoint. If neither F^ nor F2 is A^, then we can write
. „ . Tn(l) . , „ Tn(2). .
F1 ” Xj(l) n An(.l)+l.and F2 = Ij(2) n An(2)+1‘
If n(l) < n(2), then n(l) + 1 ^n[2),(so
p2 = l”^2) n An(2)+1 — An(2) — An(l)+1’ and therefore Fj and F2 are disjoint. A

similar argument shows that if n(2) < n(l), then F^ and F_ are disjoint. Thus, if Fq
arid F9 are not disjoint, then n(l) = n(2) and we have

F1 = Ij(l)AAn+l 311(1 F2 = ^(2)^^+!’
where n = n(l) = n(2). But then j (1) | j (2), so I1?„. and I3„ ,.. / J T J ’ j (1) ] (2)
split, and therefore F^ and F2 split. So we have shown that any two distinct mem-

bers of either split or are disjoint.
If p has infinitely many distinct members, let Eq, E„ , E„… be a counting of p . If

has only finitely many distinct members, let En,…, E be the members of ’p and let E,
= d> for k > m. In either case, IE J is the desired sequence.®
If F is a closed subset of the real line, then by a complementary interval of F we

mean a component of F’. (If F = R, then $ is considered to be a complementary interval
of F.)
Definition. By a special family we mean a family of subsets of R such that
(3) is nonempty
(4) each member of ^p is bounded and closed
(5) there exists a sequence’ {FnJn”j of members of p such that every member of p is

equal to some F , and the following condition is satisfied.
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(5a) If m > n, then either Fm is contained in one of the complementary
intervals of F , or else F splits with F . n’ m r n
Lemma 10. If E is an F^ set in R, then there exists a special family jP such that E

= LJ .
• 00
Proof. By Lemma 9 we can choose a sequence tEn}n=i of bounded closed sets such

that if n I m then E and E either split or are disjoint, 1 n m 47

00
and E = U E n=l
Let n. = 1 and let F. = En. Now suppose that nq, n9,…, n – t 11 1 s
are chosen and F., F„ ,…, F are chosen so that 12 n s
(i) 1 = nT < n2 < … < ns
(ii) F. is closed and bounded (i = I,…, n ) 1 o
(iii) if ns >_ r > t >_ 1, then either F^ is contained in one of the complementary

intervals of F , or else F^ splits with F^
(iv) if 1 £i £ns, then there exists j s} such
We construct F F as follows. Let be the family of
ns+l ns+l
complementary intervals of the bounded closed set
We assert that E j meets at most finitely many members of xd^. If this • co
assertion is false, then there exists an infinite sequence {In)n_^ of members of such

that n m implies In<^ I = <|>, and there exists ’ • ’� co
(for each m) a point x € I HE {x} . is a bounded sequence, 47 m m s+1 m m=i
and n i m implies that x„| x . From this it follows that {xm} 1 r n 1 m m m=i
has either a strictly increasing or a strictly decreasing convergent
CO subsequence. We will assume that is a strictly increasing
convergent subsequence; the reasoning is similar
in the case of a
strictly decreasing convergent subsequence. Say 1*^ ® b^) .
Xm(k)^ we let
< X H X. m(k)
ImCk+l)
< b, , so since x v < x , k’ mfkj m(k+l)
bk+l
we must have x „ < < a. . < x . m(k) — k+1 m(k+l)
and
Therefore, if

lim
k-*» Xm(k)
then x
lim k-x»
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Moreover, for k >_ 2
finite real
number
so
that a. € \ J E•. Therefore there exists u €{1,…, s}
K £T1 1
such that a, € E for infinitely many values of k. Consequently KU.
x € E . But since x „ A £ E u m (.kJ
so that E and E
u
E and E .. u s+1 that are less
n must split s+1 r
Since infinitely
than x;
and E
, x € E . also. But then x €. E nE „ S + 1 U S + 1
and x must be a splitting point for
many
also
a^ lie in E^, Eu contains points contains points less than x;

therefore E and E .
cannot split
and we have a contradiction. This
u s+1
proves the assertion.
3 = {(J}u{InE . : 16^ and I n E . ± <>}. S+1 S+1
Let ns+i equal ng plus the number of members of ,8. Let Fn +^,…, F be all the

members Of We must show that conditions fi) ns+l
through (v) are still satisfied when s is replaced by s+1. Conditions (i)> (ii)f and

(iv) are obvious. The verification of (iii) is divided into three parts. Suppose ng+^ >. r
> t >_ 1.
Case I. Assume that n$ > r > t > 1. In this case we already know that either Fr is

contained in one of the complementary intervals of Ft or else Fr splits with Ft.
Case II.
Assume that n
. > r > n s+1 —

t > 1.

There exists v & {1
,s}

68



such.that Ft Ev» Either Ev and Eg+^ are disjoint or they split.
Case Ila. Assume E^. and Es+j are disjoint. Either F*. = <j>(in which case F ’ is

certainly contained in a complementary interval of F ) or else F 4 I and F = InE for
some I€«j?. Let J be the smallest r 1 r s+1
— * iS � ’
closed interval containing F . Then J £ I and J £ I C (E.) , so
T • i 1
* 1=1
that J does not meet E . The endpoints of J lie in F <= E ., so v r r s+1’
neither endpoint of J lies in Ev> So J does not meet Ev and therefore
J does not meet F ; from which it follows that F^ is contained in a complementary

interval of F^.
Case lib. Assume that E and E . split. Since F. E and F £ E . v s+1 r t ~ v r s+1
it follows that F. and F split, t r
Case III. Assume that n , > r > t > n . If either F or F* is d>, s+1 — s r t T’
it is clear that Fr is contained in a complementary interval of F^.
Otherwise, there exist I„ I^ such that Ij A I2 = <l>and
Fr = Z1 A Es+1 Ft = *2nEs+r
Since 1^ and evidently split, F^ and F^ must split.
Thus condition (iii) is verified. /
As for (v), it is clear that , s VS+1|
E -U E.C2 F.CE q, s+1 1 i=n+l i s+1’
1=1 J s ’
so that

Hence
Thus we
• ’ co
have shown that we can construct sequences {n_.},._p
<v
co k=l
in such
a way that conditions (i) through (v) are satisfied
for every value of s. If we set^= {F. : k = 1, 2, …}, it is easy
to verify that is a special
family and that E = �
Definition.
If-J^ andare two families.of sets, let
^La^2 = {Fin
F2 : Fl^ ^1 F2 ^2^’

Lemma 11. Ifandare two special families, then-J-A^is a special family.
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Proof. Conditions (3) and (4) in the definition of a special family are clearly satisfied,
so we just have to verify (5).
Arrange all pairs of positive integers in a sequence according to the scheme shown

in Figure 1. Let (a(k), b(k)) be the kth term of the sequence’’’ (k = 1, 2, …). Observe
that k < I if and
^The reader may find it amusing’to derive the following formulas for (a(k), b(k)).

For real t, let t denote the largest integer that is strictly less than t. Then
a(k) = +

+
X]]) - k + 1

= |(/8k71 + | - |(-1)C(/8k+l + | - |(-1) t[’/8kU] ]) _k
+1
Hctt/SkTTl] + 3) (MST + 1) - k + 1 if /81E+I is odd
I |(’<sup>/</sup>8ic+T + 2)’<sup>/</sup>8lc+T - k + 1 if M+T. is’even, and

(1,2)
(1,3)
a $/� �
(2,1)
(2,2)
(2,31
(2,4) � • •
Q,l)
(3,3)
(3,4) • • •
L4.1)
(+.2)
(4,3)
(4,4) • • •
Figure 1.

only if either a(k) + b(k) < a(£) + b(£) or else a(k) + b(k) = a(£) + b(£) and
b(k) < b(£). Thus k < £ implies that either a(k) < a(£) or b(k) < b(£).
Let be a sequence of elements of f such that every
member of^is equal to some Fn and such that condition (5a) in the
• ”*� 00
definition of a special family is satisfied. Let {Fn)n_^ be a similar sequence for Set
Fk = Fa(k) n Fb(k) ’
Then fF.K, is a sequence in such that every member of J? K K= JL
is equal to some F, . We must show that condition (5a) is satisfied.
Suppose that £ > k. Two cases occur.
Case I. a(k) < a(£).
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Note that F^^ F
a(k) and F£— Fa(£) ’ Either Fa(£) is contained in one of the complementary

intervals of F . (in which case F. is contained in a complementary interval of F^), or
else F^^ and F

a(fc) split (in which case F. and F. split).
Case II. b(k) < b(£).
In this case a similar argument shows that either Fo is contained in
b(k) = |(2!®pJi _ /SF* *. -2) + k
= 4(»<tF|] + I - i(-l) <sup>[[,/</sup>^<sup>1]</sup>) ([[y^T - | -

|(-1)U’/§E*T^) +k
4(/8FT + l)(/8k?T - 1) + k
- 2) + k
if /8k+l is odd
if [[Vsk+l)] is even.
I
a complementary interval of F^ or F$ and F^ split. Thus condition (5a) is satisfied,

and-J^A^is a special family. �
Lemma 12. Let E„ E9 be two F , sets in R such that E. C E9, and suppose that and

are special families such that E^ = aIid ^2 = Then E^ = •
The proof is obvious.
Next we introduce some notation.
Let J be a nonempty interval on X with endpoints a, b (a £ b).
IT
By Trap (J, e, 0)(where 0 € (0, y) and e > 0) we mean the interior z
of the trapezoid shown in Figure 2. That is,
Trap(J, e, 0) = { (x, y> :0<y<e, a + y ctn 0 < x < b - y ctn 0}.
7T
For 0 g (0, ^-), let Tri (J, 0) be the closed triangular area shown in Figure 3. That

is,
Tri (J, 0) = { <x, y>: y >_ 0 and a + y ctn 0 £ x £ b - y ctn 0}.
7T
If x € X, e > 0, and 0 € (0, y), let S(x , e, 0) denote the open 0 Z O
Stolz angle shown in Figure 4. That is,
S(xo, e, 0) = { <x, y>: 0 < y < e, Xq + y ctn (it - 0) < x < xq + y ctn 0).
If K is a closed set on a real line, let J(K) be the smallest closed interval containing

K. If K is bounded, closed, and nonempty, e > 0, and 0 < B < a < p then we define
B(K, e, a, B) = Trap (J(K), e, a) - U Tri (I, B),
where denotes the set of complementary intervals of K.

x axis

Figure 2. — Trap(J,E ,0)

x axis
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X<sub>o</sub>
x axis

Figure 4.—S(x0>£ ,9)

I > We state without proof the following readily verifiable facts.
(6) B(K, e, a, 3) is an open subset of H.
(7) S(e, e, 0) is an open subset of H.
(8) If Kjl and K2 split, then for any e2, a, 3, B(Kp Ej, a, 3) and B(K2, e2, a, 3)
are disjoint. /
(9) Suppose that £ K, e > e^ > 0, and 0 < 3 < 3-^ < < a < y.
Then
B(Kp Ep (Xp 3p n H C b(K, e, a, 3) .
(10) Suppose Kj is contained in one of the complementary intervals of K, and

suppose e, a, 3 are given. Then there exists 6 > 0 such that for every n £ 5,
B(K, e, a, 3) and B(Kp n, a, 8) are disjoint.
IT L *
(11) Suppose that a < 0 < and xq J(K) . Then, for any e, Ep
B(K, e, a, 3) and S(xq, Ep 0) are disjoint. � 7f
(12, Suppose that x € K n J(K) and -3 < a < 0 < Let e be given.
Then there exists 6 > 0 such that for every h £ 6,
S(xQ, n/ 6) n H S B(K, e, a, 3) .
(13) Suppose that e < e’ and 0’ < 0. Then
stx“TT^TAH £S(xq, s’, 0’)-
(14) Suppose xq$K and e, a, 3, 9 are given.. Then there exists 6 > 0 such that for.

every h £ 6,
S(xq, n, 0) and B(K, e, a, B) are disjoint.
(15) If xq | x^ and e, 0 are given, then there exists 6 > 0 such that for every n £ 6,
S(xq, e, 6) and S(Xp n, 0) are disjoint.
(16) B(K, e, a, B) n X C K.
(17) S(xo, e, 6) nx = {xo}.
2
Definition. If^ris a special family, let T be the set of all members of 7 that have

two or more points.
Definition. LetJ^be a special family, let E be the set of all endpoints of intervals

J(F) where F € F , and suppose that O<B<a<0<H-. By a pair of special a, 3, 0
functions for we mean a pair (e, 6), where e and 6 are positive.real-valued functions,
2 the domain of e is E, the domain of 6 is , and
(18) for each n > 0, there exist at most finitely many F € such that 6(F) >_ p;
(19) for each n > 0, there exist at most finitely many e e E such that e(e) £ n;
(20) if e, e* € E and e e’, then
S(e, c(e), 0) and S(e’, E(e’), 0)
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are disjoint;
(21) if F, K ef2 and F 4 K, then
B(F, 6(F), a, B) and B(K, 6(K), a, B) are disjoint;
(22) if e € E and F e^2, then
S(e, e(e), 0) and B(F, 6(F), a, B) are disjoint.
Lemma 13. Letbe a special family and suppose that Oc’B<a<0<y. Then there exists

a pair of special a, B, 6 functions for
Proof. Let {Fn}T7j be a sequence of members of 5s”of the type referred to in condition

(5) in the definition of a special family. Let (J^(n) = {F € J®2 : F = F^ for some k
<_ n}
E = set of all endpoints of intervals J(F) for FGf, F 4 I
E(n) = {e € E : e is an endpoint of J(F^) for some k £n for which F^ 4
If J(Fj) has one endpoint e, set e(e) = 1. If J(F^) has two endpoints e^, 62, then

by (15) we can choose e(e^) £ 1 andc(e2) £ 1 so that S(e1} e^), 0) and S(e2, eCep> 9)
are disjoint. If F16’f;2, set 6(F1) = 1. In this case, J(Fn) hats two endpoints e. and e9
and (by (11)) B(F1, 6(F1), a, B), S(ep e^), 0). and S(e2, cfep, 0) are 1 all disjoint.
Now suppose that e(e) and 6(F) have been defined for all
2
e € E(n ) and all F Gy (h) in . such a way that
(i) if e, e’ € E(n) and e | e1, then S(e, e(e), 6) and /
S(e’,e(e*), 6) are disjoint;
(ii) if F, K€dP2(n) and F | K, then B(F, 6(F), a, B) and B(K, 6(K), a, B) are

disjoint;
2
(iii) if e €E(n) and F€(p (n) > then S(e, e(e), 0) and
B(F, 6(F), a, B) are disjoint;
(iv) if e € E(n) and k <nis the least integer for which
e G E(k), then e(e) £
2
(v) if F £ jF (n) and k < n is the least integer for which F€f*(k), then 6(F) <p
We must extend the definitions of e and 6 to E(n+1) and
2
tF (n+l) in such a way that conditions (i) through (v) are still satisfied when n is

replaced by n+l.
2
Case I. If F . = * or if F . = F. for some k < n, then J1 (n+l) = n+l n+l k — v

^(n) and E(n+1) = E(n), so that nothing is required to be done.
Case II. If F , consists of a single point e and if e 6 F, for some n+l k
k < n, then (since F . and F. must split in this case) e is an n+i k
endpoint of J(F.), so that again 7s2 (n+l) = ^p2(n) and E(n+1) = E(n), K
and nothing is required to be done.
Case III. Suppose that-F j consists of a single point eQ and that
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for each k < n, e F-. . By (14), (15), and the fact that E(n) and
(n) are finite, we can choose e(eo) €£ (0, so that S(eQ, e(eQ), 0) is disjoint from S(e,

e(e), e) and from B(F, 6(F), a, B) for each e €E(n) and each F^^pfn). The construction
is then finished for
E(n+1) and F(n+1).
I
Case IV. Suppose that Fn+j contains at least two points and that, for each k <

n. F, i F ,. For each k < n, either F . splits with F. , or else Fn+1 is contained in
a complementary interval of F^. Since ^(n) is finite, (8) and (10) show that we can
choose 5(Fn+1) £(0, ^y) so that B(Fn+i, 5(Fn+^), a, 6) is disjoint from B(F, 6(F), a, B)
for each F€j*(n).
Say e € E(n). Then e is an endpoint of J(Fk) for some k <_ n, so (since Fn+^ either

splits with F^ or is contained in a complementary interval of FR) e ^J(Fn+1)*. By (11),
B(Fn+1, 5(Fn+1), a, 8) and S(e, e(e), 0) are disjoint.
’ Let e , e 1 be the endpoints of J(F n).
o o r n+1
Case IVa. eQ, e • £E(n). ,
In this case the construction is already finished.
Case IVb. eQ€E(n) and eQ* $E(n).
If e ’ £ F. for some k < n, then F , splits with F. , so that o k — ’ n+1 r k’
eQ’ must be and endpoint of J(F^) –which contradicts the assumption that e ’ 4

E(n). Hence, for each k < n, e ’ £ F. . By (14), (15), and the fact that E(n) and J^(n)
are finite, we can choose
1 — -
e(©0’) C (0, ^-y) so that S(eo’, e(eo’)» 0) is disjoint from
S(e, e(e), 0) and from B(F, 6(F), a, B) for each e6 E(n) and each F€ f2(n). By

(11), S(eQ’, e(eo’)» 0) and B(Fn+1, 6(Fft+1), a, B) are disjoint. Thus the construction is
finished for E(n+1) and(n+1).
/
Case IVc. eQ E(n) and e * € E(n).
This case is essentially the same as Case IVb.
Case IVd. eQ E(n) and eQ’
<E(n).
k < n. then F y-snlits with F, . so
If e 6F, for some o K
eQ is an endpoint of J(Fk); a contradiction. Thus e^ Fk for k £ n, and similarly e ’

F. for k <_ n. Therefore, by (14) and (15), we can choose e(e ) and e(e ’) E (0, —rr)
so that S(e , e(e ), 9) and o o n+1 o o
S(eo’, E(eo’), 6) are disjoint and each of S(eQ, e(eQ), 9) and
S(eo’j e(eo’)> 0) is disjoint from every S(e, e(e), 9) (e €E(n)) and ~ from every B(F,

6(F), a, 8) (FG’J^n)). By (11), S(eQ, e(eQ), 9) and
S(eo’, e(eo’)> 0) are each disjoint from B(Fn+1, a» > so t^e
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construction is finished for E(n+1) and(r (n+1).
I
We have shown that we can inductively define e(e) for every e € E and 6 (F) for

every F € f2 in such a way that (i) through (v) are satisfied for every value of n.
Conditions (20), (21) and (22) in the definition of a pair of a, B, 9 special functions
are thus automatically satisfied by (e, 6). We must verify that (18) and (19) are also
satisfied.
Suppose (19) is false. Then there exists n > 0 and there
00 exists an infinite sequence distinct members of E such that
E(ek) j£ n for every k. Let m(k) be the least integer for which e^ is an endpoint of

J(F ,…). Each J(F ) has at most two endpoints, so, m j in 1

since the e^ are all distinct, there exists (for given m) at most two values of k for
which m(k) = m. Therefore there exist infinitely
many distinct integers among m(l), m(2), m(3), … Consequently
there exists j with J m(j)
< n. But, by (iv), e(e..) £ ^
contradiction. So (19) must be true. A similar argument shows that
(18) is true. �
_IT
Lemma 14. Let T be a special family, 0 < g <. a < 0 < y, and. let E be the set

of all endpoints of intervals J(F) for F €-J*. Suppose (e, 6) is a pair of special a, g, 0
functions for If e^, are two real- 2
valued functions having domains E and^f respectively, and.if
0 < E|(e) £ e(e) for all e £E, and
0 < £ 6(F) for all F^J2,
then (Sp 6^) is a pair of special a, 0, 0 functions for^.
Proof. This follows from the fact that
S(Xo, E’, 0) <^S(Xo, E”, 0) I
and B(K, e’, a, g) OB(K, e”, a, g)
1 whenever e’ £ e”. 0|
Theorem 4. Let A be any set of type Fag in X. Then there exists a . bounded

continuous complex-valued function f defined in H such that A
is the set of curvilinear convergence of f.
co
Proof. We can write A = f | A , where each A is of type F and ’ J n’ n o
n=l
Ap+1^An for every n. For each n, let be a special family with CX-v ut

-31
“ ^nA^n+l for n ’
By Lemmas 11 and 12, together with mathematical induction, K is a special family

and = A
n- Moreover, every member of^+^ is a subset of some member of^.

00
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Let be a strictly ascending sequence in (0, $-)
. IT
converging to g-.
Let {<x be a strictly descending sequence in ($-, �$) • 11 converging. to ©o 7T ’ ’

31T
Let be a strictly ascending sequence in Q, •—)
converging to g—.
Let E be the set of all endpoints of intervals J(F) for
Let (e(l,0, 5(1,-)) be any pair of special o^, 8^, 61 functions for .
Nov; suppose that for each k<nwe have chosen a pair of
special a, , 3„ 6, functions (e(k,-), 6(k,-)) for ft. in such a way K K K i*
that
’ (i) whenever 1 £ k £ n - 1, eg Ek+p F g
e € F n J(F) , then
S(e, e(k+l, e), 6k+1) AHClW 6(k, F), <xk, 3k);
(ii) whenever 1 £ k £ n * 1, eg
., and e g E. , then k+1* k’
SCe, e(k+l, e), 6k+1) nHCs(e, e(k, e), 6k);
(iii) whenever 1 £ k £n - 1, Kg-J^+1, Fe^2, K — F» then
B(K, 6(k+l, K), ak+1, Bk+1) AHCB(F, 6(k, F), aR, 3k).
Then we construct (e(n+l,-), 6(n+l,‘)) as follows. Let
(e, 6) be any pair of special an+p ^n+l’ 9n+l :Functl°ns ^°^^n+i’ ^-2 *
e g En+i - En, then for some unique F€ , e £ F A J(F} , so by (12) we can choose

5(e) >0 such that n £ 5(e) implies
S(e, n, 0n+1) nHGB(F, 6(n, F), an, &n).
We set e(n+l, e) = min {c(e), 5(e)). On the other hand, if e g En+^ r\ E^, then we

set e(n+l, e) = min {e(e), e(n, e)}.
If then there exists a unique K with F £ K.
Set
6(n+l, F) = min {6(F) , ~ 6(n, -K)}.
By Lemma 14, (e(n+l,*)> <5(n+l,’)) is a pair of special a p
B ., 6 , functions for^.„ and by (13) and (9), conditions (i), /
n+1 n+i n+i (ii), and (iii) are still satisfied when n is replaced by n+1. Thus we can

inductively construct a pair (e(n,)> 6(n,)) of special an, $n, 0n functions for in such a
way that conditions (i), (ii) and
(111) are satisfied for every n.
Let
V_J SO> e(n» e) > 0J | V e € E„ J
VL BCF> 6<n> F)’“ € t n n
Then Un is open. For fixed n, all the various sets S(e, e(n, e), 0^) (e € E ) and B(F,

6(n, F), an, &n) (F € 5^) are open and pairwise disjoint, so that every component of
Un is contained in one of the sets ^,2
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S(e, e(n, e), 0n) (e € En) or B(F, 6(n, F), «n, &n) (Ffify. It therefore follows from
(16) and (17) that if Q is any component of U , then
(23) « AX An.
From the fact that (e(n,’), 6(n,*)) is a pair of special an, Bn, ©n functions for 5^

together with conditions (18) and (19), it follows that
u
n
nH = tU S(e,.e(n, e) , 6 ) HH] u e 6 E n ………

[ U2 B(F, 6(n, F), an, y n H].
Consequently, conditions Ci)> (ii), (iii), together with the fact that e € E , - E e 6

F n J(F) for some 1
n+1 n 1 J n’
show that U , H U for every n. n+1 n
By Urysohn’s Lemma, there exists a continuous function
gn : H �+ [0, 1] such that
gn(z) = 1 for z € H - Un and g (z) = 0 for z €. TT’ _ n H.
� n n+1
co
Let g(z) = S — s (z). Then 0 < g(z) <_ 1, and the series converges n=l 2n
uniformly, so g is continuous on H.
If
z € H - Un, then z £ H - for every m >_ n
so
that

and hence
(24)
CO
. g(z) 1 E m=n
1 = 1
2m 2n-1
(z € H - Un) .
Also
if z € U „ n+1’
then z € U„ U», ,.., U „ so that 12 n+1
= gn(z) , and
(25)
. i z ns m=n+l 2,u
1
2n
€ Un+1

We assert that
3ir
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(26) for each xq € A, g(z) + 0 as z + xq with z € S(xq, li- g—) •
Take any natural number n. Since x C A , = i> either 7 o n+1 v[†]z*’n+l’ case, set

n = e(n+l, xq). In the.second case, (12) shows that we can choose n > 0 so that
S(xq, ni J1-) (F, 6(n+l, F), an+1, .
Suppose <x, S(xq, 1, -g-) and y < n. Then, in the first case, <X, y>€ S(xo, n, �§-)

£S(xq, e(n+l, xq) , 6n+]) ^Un+1, and in the second case,
<x, y>£ S(xo, n, £b(F, 6(n+l, F), BnU) £ U^. So, by (25), ( <x, y>6 S(xo, 1, jl)

and y < n) =><x, y>£ Un+1
0 5 g(x, y) 211
This proves (26). 1
Let xq be a point in X and y any arc at xq. Suppose g(z) �> 0
as z �* x^ along y. Then y has a subarc y’ with one endpoint at xq
such that y* - {xq} Cg”‘l((- Therefore, by (23), xq € Afl.
1_ £.
2n’ 2n Since
0). By (24), y’ - {x^.
n was arbitrary, xq
1 i n n=l
= A.
Thus,
(27) if there exists an arc y at xq such that g(z) •* 0 as z approaches xq along y,

then x$ € A.
Now define
f(x, y) = . gCx, y) sin + i g(x, y) ( <x, y>€ H).
3tt
If xq e A, then, by (26), f(z) •* 0 as z -> xq with z GS(xq, 1, •$—).
Thus every point of A is in the set of curvilinear convergence of f.
Conversely, suppose xq is any point of the set of curvilinear
convergence of f. Let y be an arc at xq such that f approaches the limit c + di

along y. Then g approaches the limit d along y. If d is different from zero, then g(x,
y) sin — (the real part of f) cannot approach any limit along y — a contradiction.
Therefore g approaches the limit 0 along y, and, by (27), xq € A. Therefore A is the
set of curvilinear convergence of f.M

5. Boundary Functions for Continuous Functions
Lemma 15. Let E be a metric space, Y a separable metric space. i
Suppose that : E -> Y is a function having the following property. For every open

set U $=Y there exists an F set L?E and a countable set NO such that
9-1(U) CL C <p-1(U) u N. ~”
Then there exists a countable set M ^E such that cpL is of class e-M
CFa (E - M)).
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Proof. Let B be a countable base for Y. For each B€&, let L(B)
be an F^ set and let N(B) Q E be a countable set such that
<1(B) Q L(B) C <p-1(B) u N(B)
Let M = VJ N(B). Then M is countable. Let E = E - M and let B€fi °
= <p|g . We show that <po is of class (F (Eq)) . o .
Let W be any open subset of Y. If p € W, there exists r > 0 such that S(r, p) Q

W. Choose B€ ® so that p €BSs(| r, p) . Then JBSS(r, p) Cl w. It follows that
N = U B = U
B€dt(W) B € d(W)
where (J.(W) = £B€® : B” ^W}. Therefore
Vb-1(W) = E A ‘p’M = E A VJ • <p-1(B)
0 0 0 B€ffl(W)
- E A U L(B) 0 Bcacw)
— E U [<p-1CB) u N(BJ]
B£ (B(W)
CEO O [CP[‡]® U M]
B€Q(W)
= e n U <p-1CB) ° b e <j(w) -i -i
= Eon<p1CW) = q 1 (W). o
Consequently cp^CW) = Eq H b -L(B), so ^“l(W) is of class W’1
Theorem 5. Let Y be a separable metric space and let f : H •> Y be a continuous

function. Suppose that E C X and that cp : E -> Y is a boundary function for f. Then
there exists a countable set M Q E such thatcpL .. is of class (F (E - M)).
Proof. Let U be any open subset of Y, and let W = (U)’. Set
En = {x € X : there exists an arc y at x, having one endpoint on Xn, such that y -

{x} -f’\u)}
K = {x € X : there exists an arc y at x such that
Y - {x} C f”1(w)}. ’
Ob serve that
^(U) cQ E n=l n and <jp_1(W) Q K.
For the time being, let n be a fixed natural number. For each x € K we can choose

an arc yx at x such that
Yx - {x} £ Hn n f-1(W) .
Since an arc.at x is by definition a simple arc, yx - {x} is a connected set and hence

must be contained within one nonempty component of H n f”\w). Let U denote this
component (for each x € K) . n * x
Let T be the set of all points of K that are two-sided limit points of E”n. We claim

that if x, y € T, then x | y implies
Ux n U = 4>. If Ux n Uy. <j>, then (since Ux and U^. are two components
of the same set) U and U are equal. Let p be the endpoint of y x y x
lying in U and X
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let
q be the endpoint of y lying in U^. = Ux<
We can

join p and q by an arc y lying in U . X
Putting y , y and y together, x y
we obtain an arc a with one endpoint at x and the other at y, such that a - {x,

y}gU’. According to [12] we can choose a simple arc
a’ £ a having one endpoint at x and the other at y. Of course, a’ - {x, y) ux^ A

f-1(W). Let I be the open interval in X with endpoints at x and y, and let J = X - I.
Let B be the bounded component of H - a’ and let A be the other component. Since
Xn is unbounded and does not meet a’, X £ A. n
Because x is a two-sided limit point of En, we can choose a point w €. I H En« Let

g be an arc at w, having one endpoint on Xn, such that g - {w} C f’^CU). Then g does
not meet a’ (because a’ - {x, y] ^.f \w) and f \w) f \u) = <f>), and therefore (since
g. - iw} contains a point of X C A) g - {w} £. A. It follows that
w € A. This, however, is a contradiction
because the frontier of A
(relative to the finite plane) is a’u J.
We conclude that, for x,y € T, countably many components,
x y implies U*. C\ U = <j>.
An open set in the plane has only
so it follows that T must be countable. Let S be the set of all
points of En that are.not two-sided limit.points of En>
.We know that
S is.countable, so
K A En = [K n (E - S) ] U [K n S]
= T u [K aS]
is countable. 00 �” �
Let N = K n \^J E = (K HE ). Then N is countable, and, . n=l n=l
since <p (W) K, . -
00 00
<p-1(U) Q Ea|J E C E
n=l n=l
00 CO
= (E A K E ) U ((E - K) n E ) n=l n=l
(E n N) U (E - K) C (E nN) U (E - (p”1 CW))
= (E A N) U <p“1(U) .
1. 00
Thus <p”l(U) Q E A \^_J E C(EnN) u <p”” ’(U), and the desired result n=l
follows from Lemma 15. �
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Corollary. Let Y be either the Riemann sphere, the real line, or a finite-dimensional
Euclidean space. If f : H + Y is a continuous function, if E Q X, and if q>: E + Yis a
boundary function for f, then cp is of honorary Baire class 2 (E, Y).
Next we show that the foregoing corollary is as strong as possible in the sense

that if E is any subset of X and (p is a function of honorary Baire class 2 mapping
E into a suitable space, then there exists a continuous function in H having f as a
boundary function. A proof of this result– at least for real- or vector-valued functions
was outlined by Bagemihl and Piranian [2, Theorem 8], in the case
where E = X. Although the construction given here is carried out much l
more explicitly than the construction given by Bagemihl and Piranian, my treatment

differs from theirs in only two aspects that are of any significance. First of all, the proof
of the theorem for arbitrary subsets E of X depends on Lemma 6 of the Introduction.
Secondly, Bagemihl and Piranian say in the last line of their proof that there is ”no
difficulty now in extending f continuously to the whole of D in such a manner that
<j>is a boundary function for f.” While this appears to be all right for real- or vector-
valued functions, it is not clear why the extension should be so easy for functions
taking values on the Riemann sphere. Theorem 7 of the present paper shows, however,
that the result can be obtained for functions taking values on the sphere once it is
known for vector-valued functions.
The following miniature closed graph theorem will be a convenience.
Lemma 16. Suppose that M is a metric space and that u : M -> R is a function

having the following properties:
(i) if {pnJ is a convergent sequence of points of M, then {u(pn)} converges neither

to + » nor to -
(ii) if {p } Cm, p € M, and y € R, and if p -� p and n n n
u(p_) �* then u(p) = y.
n n Then u is continuous.
Proof. Suppose that {p^} is a sequence of points in M converging to a point p € M.

Using (i) it is easy to show that {u(pn)J is a bounded sequence. Suppose that {u(pn)}
does not converge to u(p). Then there exists a subsequence {u(pthat converges to a
real number y u(p). This, however, contradicts (ii). We conclude that
u(p_) uCp) • � •
n
Lemma 17. Let h : R + R be a strictly increasing function such that h(R) is neither

bounded above nor bounded below. Then there exists a 1c ±
continuous weakly increasing function h ; R �* R such that h (h(x)) = x for every

x € R.
Proof. Let Z = h(R). Observe that h’4 : Z �> R is strictly increasing. For any x €

R, the set (-00, x] r\ Z is nonempty. Also, h-\(-°°, x] n Z) is bounded above, because if
we choose y G Z with x ^y, then
-1 -1 h ((-“> x] Z) is bounded above by h (y) .
We claim that for every x E R
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-1 -1
(27) sup h ((-«>, x] n Z) = sup h ((-<», x) n Z).
If x £ Z, the equation is trivial. Suppose x G Z. Then y < h”\x) (h(y) < x and h(y)

€ Z), .
so that h((-«>, h”^(x))) C (-ooJ x) n Z. Hence
(-«, h4(x))Ch4((-», x) n Z),
so that sup h-1((-<», x) n Z) >_h-1(x) = sup h-1((-«>, x] n Z). The opposite

inequality is trivial, so (27) is established.
We also claim that
(28) inf h~‘l((x, +°°) rv Z) = sup h-1((-°°, x] n Z).
-1 -1
Obviously, inf h ((x, +“)nZ) >_ sup h ((- <», x] n Z). Take any y >sup h \(-<»,

x] n Z). If h(y) x, then h(y) £ (-~, x] n Z, and
so ygh ((-«>, x] n Z)– a contradiction. Thus h(y) > x and h(y) € (x, +“) n Z.

Therefore y^h”^((x, +~) n Z), and so inf ’h 1((x, +°°) n Z) _< y. In view of the choice
of y, this implies
that
inf h-1((x, +“) n Z). £ sup h”1 ((-00, x] n Z), and (28) is established.
Define
* -1 h (x) = sup h ((-<», x] n Z).
* [§]
It is clear that h is weakly increasing and that h (h(x)) = x for ’ * I every real x..

The continuity of h can easily be deduced from the equations
”k ft
sup h ((-», x)) = h (x) inf h*((x, +«)) = h*(x),
which are established as follows:
sup h*((-~,.x)) = sup sup h”1(C-°°, y] r\ Z)
= sup h~1((-«% x) n Z)
= sup h”l((-“, x] rx Z)
, * �
= h (x)
inf h ((x, +«)) = . sup h ((-<», y] n Z)
= juf ^f h_1((y, +») rx Z)
= inf h~\(x, +«) rx Z)
= sup h”\(-°o, x] n Z) ,
* *
= h (x). �
Theorem 6. Let E be any subset of X and let <p: E ->be any function of honorary

Baire class 2(E, R^). Then there exists a ontinuous function f : H ->R^ such that cp
is a boundary function for f.
Proof. Let ip : E �> be a function of Baire class 1(E, R^) and N a countable subset

of E such that <^(x) = ip(x) for every x € E - N. Let {s } . (with n + m implying s
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4 s ) be a countable dense subset of X that includes every integer and every point of
N. Let
t =1 if s is an integer
t = — if s is not an integer,
n 2n ’ n 6

Define
h(x) = E t if x > 0
0<sn<x n

i. h(x) = .-E t if x £ 0.
x<s <0 — n—
Then h is a strictly increasing function from R into R, and h(R) is
* bounded neither above nor below. Let h be the function described in
Lemma 17.
Suppose that 0 < y <1. Then (for fixed x)
*, x - (l-y)u , _ „
u - h ( ————————– -
is a strictly increasing continuous function of u that approaches +°° as u -> +~ and

-» as u -> -<». Consequently there exists precisely one number u(x, y) that satisfies
the equation
(29) u(x, y) - h*( y) ) = 0.
I claim that u(x, y) is a continuous function on
= { <x, y>: x, y € R and Q < y < 1}. Suppose’ { <xn> y^} C H1
and yn> * <*, y>€ Hr If u(xn, yn) + then - xn - >’n) _ .
yn n ’
and hence
* x - (1-y )u(x , y ) u(x , y ) - h*( n n >
n’ 7n’ k y which.contradicts (29) , Thus u(xn? y ) cannot approach +»., A similar

argument shows that u(xn, y ) cannot approach -w.. Now assume that
u(x n
Then, by (29)
lim r r -s k* r
n-x» tu(xn’ C
x: -r. (1-y )u(x , y )

* x - (l-y)u
- h (——————————- —— -
so u o
= u(x
y) •
By Lemma 16, u is continuous.

From
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Lemma 6, there exists a sequence °f continuous
functions mapping X into such that g^(x) •* ip(x) for each x € E. n
For n > 2
define
fo(x, y) =
(yn(n+l) - n)gn(u(x, y)) + ((n+1) - yn(n+]))gn+]L(u(x, y))
� 1 1 when —=- < y < —. n+1 — 7 — n
Then f is o
continuous
on
we can assume that
is
rn
o
inf x>s
n
2 ” “•
defined
h(x)
By the Tietze extension theorem
and continuous on
all
of H. Let
vn
sup x<s n
h(x)
V(sn) - Ksn)
if s € N n
vn
if s £ N. n T
If x
and y are real numbers, define
x V y = max{x
y>-
set
An(x, y) =
[(1 - ny) V 0] [(1 - ——1 . X A/
n n
I r + A - 2s
1 n n n
. .s -x
2 -2— y
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Then
An
is continuous in H. Observe that An(x, y) = 0 when y >_
Using this fact, it is:easy to show that, if we set
f = f + E A , 0 n=l n
then f is defined and continuous in H. We now show that (pis a boundary function

for f.
Let p be any point of ’E. The line
(30) x = (h(p) - p) y + p
passes through (p, 0), and the part of it that lies in is an arc at p. We will show

that f approaches ip(p) along this line. If we substitute (h(p) - p)y + p for x in the
expression for A (x, y), we i � n

obtain
(31) An(x, y) =
[(1 - ny) V 0] [(l- —i-j- |r_ <• 1 4 2(1 - 1) (s - p) n n 3

- 2h(p) | ) V O] vn<
If p £ s , then h(p) £ &n, and one can verify directly that (31) vanishes. If p > sn,

then h(p) £ r , and again one can verify directly that (31) vanishes. Thus An(x, y)
vanishes along that part of the line (30) lying in H.
Solving (30) for h(p), we find that, along the given line, h(p) = ,
and hence p = h (h(p)) = h ( -—-Xl-XlE) . Therefore, if 0 < y < 1, p = u(x, y) .

So, if ^x, y^ satisfies (30) , n £ 2, and £ y £ ~, then
f0(x, y) = (yn(n+l) - n)gn(p) + ((n+1) - yn(n+l))gn+1(p).
Since the coefficients of gn(p) and gn+j(p) in the above expression add up to 1 and

since both coefficients lie in [0, 1], f (x, y) lies on the line segment joining gnCp) to
gn+^Cp)» an^ it follows that fQ(x, y) approaches ip(p) as y^ approaches p along the
line (30). this line lying in H, f(x, y) show that f approaches (s^) that lies in H. Again,
we first consider the value of along the
Since each An vanishes on the part of also approaches ip(p) along the line.
Let s^ be any point of N. We along the part of the line r. A
(32) x = (——– x—- - sjy +
given line. Substituting the value of x given by (32) into the expres
sion for A , we obtain n’
(33) An(x, y) =
[Cl-ny) V 0j[(l - -1- |rn - rm + + 2(1 - 1) (sn- |) V 0]vn.
n n
If s < s , then £ < r < £ < r , and one can verify directly that m n m m r-. n n’
(33) vanishes. If s < s , then £ < r < £ < r , and again one can n m n n — mm
verify that (33) vanishes. Thus, for n | m, ^(x, y) = 0 when <x, y^ lies on the line

(32) and in H.
If we take n = m in (33), we obtain
Am(x, y) = [(1 - my) V 0]vm.
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Therefore Am(x, y) approaches vm = 9(sm) - along the given line. Take any <x, y>€
satisfying (32), and take any a and b satisfying
(34) a < s < b.
m
�^ < r^ £ h(b), so that
Then.h(a). < ft . < - — m
(h(a) - s )y + s m ’ m
x < (h(b) - s )y + s ; from which we deduce that m m

h(a).
x - (l-y)s

*
Since h
is weakly increasing, * * x - (lry)s
: h (h(a)) <h ( ————- ——
m *
—). <h (h(b)) = ,b.

Since a
and b were
taken to
be any two numbers satisfying (34), we
conclude that
whence it follows that u(x, y) =
s . Thus m
fo(x>
y) = (yn(n+l) - lOg^s^) +
when
folx
1 1
(x, y> lies on the given line and £ y £ y- Consequently y) approaches ip(sm) along

the line (32). So f approaches <p(sm) +
<p(s ) ’ ^(sm) = <p(sm) > and the theorem is proved. �
2
Theorem 7. Let E be any subset of X and let cp: E -> S be any
2
function of honorary Baire class 2(E, S ). Then there exists a
2
continuous function f : H -> S such ithat <p is a boundary function for
f.
Proof. The proof of this theorem is very similar to that of Theorem 1.
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2 3
Since S CR , there exists, by Theorem 6, a continuous function
3
g : H -> R having ipas a boundary function. Let
K = g-1({v € R3 : |v| = | J)
L = g-1({v € R3 : |v| > | })
F = g-1({vGR3 : |v| £y }).

Let g0 = gl^. H is homeomorphic to R , so by [5,.Lemma 2.9,p. 299],- g can be
extended to.a continuous function so
g1 : H -> {v G. R3 : | v | = . •
3
Define f^ : H -> R - {0} by setting <
fjCz) = g(z) if z € L
fx(z) = . gx(z) if z € F.
Then, since F and L are closed, f^ is continuous on H. It is easy to 3 2
verify that <p is a boundary function for f^. Let Pq : R - {0} �* S
2
be the 0-projection onto S (see page 11), and let f be the composite
2
! function PQ « f^. 1 Then f maps H continuously into S , and Po« <p =
is a boundary function for f. �

CHAPTER II. BOUNDARY FUNCTIONS FOR
DISCONTINUOUS FUNCTIONS
6. Boundary Functions for Baire Functions
It is not known whether the set of curvilinear convergence of a Borel-measurable

function defined in H is necessarily a Borel set. The answer is not known even for
functions of Baire class 1. However, a theorem on boundary functions that is similar
to the corresponding result for continuous functions in H can be proved for functions
of Baire class 5 in H.
Definition. If A and B are two sets, we will call A and B equivalent and write A -

B if and only if A - B, and B - A are both countable. It is easy to check that - is an
equivalence relation.
Lemma 18. If A s E, then S - A - S - E for any set S. If A - E ’ ’ n n
for all n in some countable set N, then
LJ A s Ij E and p| A “ P| E . n 6N n £ N n € N n e N
The proof of this lemma is routine.
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Definition. An interval of real numbers will be called nondegenerate if it contains
more than one point.
Lemma 19. Any union of nondegenerate intervals is equivalent to an open set.
Proof. Let be any family of nondegenerate intervals. .It will
suffice to prove that Ui-UI is countable. We can is4J- ie<5-
write

I€&
-J n * n
where {J } n
is a
countable family of disjoint open intervals.
If
then x o
so that
is
an endpoint of I
for some I € For some n, I o
n*
* I
is an endpoint of J^.
*—
G J o n
Thus
is
contained in the
set of all endpoints of
the
various J . and the n’
lemma is
proved.

Lemma 20. Let h be a weakly increasing real-valued function on a nonempty set E
£r. Suppose that |x - h(x) |. £ 1 for every x € E. Then h can be extended to a weakly
increasing real-valued function h^ on R.
Proof. Let e = inf E (e may be -»). For each x € (e, +“), set
h^x) = sup h ((-<», x] r\ E).
Since |t - h(t) | 1 for each t € E,
t G (-°°,; x] n E r^>h(t) — x + 1,
so h^ is finite-valued. If e = - <» we are done. If e >then x e E implies h(x) >x -

1 >e - 1, so h is bounded below. For x C C-°°, e] set
h^(x) = inf h(E).
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It is easy to verify that h.^ has the required properties. �
Lemma 21. Let Y be a metric space, f : R •* Y a function of Baire class 5(R, Y),

and suppose that h : R -> R is weakly increasing. Then there exists a countable set N
Cr such that the composite function f o h|D .. is of Baire class 5(R - N, Y). K-In
Proof. Let N be the set of discontinuities of h. By a well-known theorem, N must be

countable. But then h|R is continuous, so that f ® (h|R N) = (f <» h) |R N is of Baire
class ?(R - N, Y). 8
Lemma 22. Let Y be a separable arcwise connected metric space, E any metric

space, and let <p: E ->Y be a function having the following property. For every open
set U *= Y there exists a set T € P^+\e) such that <p-i(U) Ct Then, if £ >_2, <p
is of Baire class 5(E, Y) .
Proof. The proof is similar to that of Lemma 15. Let (B be a countable base for Y,

and suppose that W is any open subset of Y. Let
d(W) = {US® : U C W}.
The argument in the proof of Lemma 15 shows that w = u = L7 u. U€(J(W)

U€O(W)
For each U€(fi, let T(U) € P^+\e) be chosen so that «p’1(U)^T(U)G<p’1(ii). Then
<p-1(W) = T(U)
ued(w) <sup>T</sup> uedcw)
U€d(W)
Thus <p \w) = T(U) , and since P^+\e) is closed under countable
uedOD
-1 E+1
unions, <p (W) € P5, (E) . Therefore is of Baire class £(E, Y) . �

Theorem 8. Let Y be a separable arcwise
f : H + Ya function of Baire class g(H
X, and <p: E ->Y a boundary function for
C + 1(E, Y).
Proof.
Observe
that
connected metric space,
Y) where
f. Then
Let U be any open subset of
C = AUB.
For each x
and let V =
g >_ 1, E a subset of
ip is of
Y - U.
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= V-1(V)
choose an arc yv
Baire class
Set
at x such
lim z->x f(z) z €Yx
Yx
Yx
|z - x| £ 1}
- ’ {x} c f-1(V)
Notice that if x G A and
We will say that
have subarcs y ’ and y ’ ’x ’y
if
if
x € B.
y G B, then
y„ meets y.
’ X
in
respectively such
n’ 311(1 Yx’ n Yy* *
L = {x€ A : (Vn)(3y)(y € C, a
M = {x € a
= {x’€
Let
and
: (Vn).(3y)(y€ C
: (3n)(v meets no x
: (9 n)(y meets no
L ^ULh
M = Ma U .
and
y ” *•
provided that y and y x y
that x £ yx’ C Hn,
meets y in H )} y ’ x n’
meets y
inHn)}
Yy (with y | x) in Hn)}
Yy (with y f x) in HJ
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Observe that L&, 1^, M&, are pairwise disjoint, and that and B = L^ u M&.
For
meets no y y
meets no y y
each x6M, let n(x) be a positive integer such that y
(with y
x) in . Then n >_n(x) implies that yx
Let
• meets Xn, and, if x € M, n > n(x)}.
Then K K . for each n, and C = ( 7 X . n n+1 ’ n
n=l
We next show that for each positive integer n and each x there exists a nondegenerate

closed interval I® such that
x € C La (X - K^) . By the definition
y € C (y 1 x) such that y meets yx in
interval having its endpoints at
x and
y-
of L , there exists a’
Let In be the closed x
Let t be any point of
We must prove that t £ L& u (X - assume t £ K . Then y. meets X n 11 n
that y. must meet either y or y ’t ’x ’•
K ) . n’
If t i K .we are done. ~ n’
and hence it is clear from
rigorized by means of
Theorem 11.8
in (This argument can ; on p. 119 in [11].) But,
then (because t € Kn)
n >_ n(t), so
Therefore
t £ M. Now
Hence y
C - B = A.
’ In. x
So
Figure 5
be
if t € M,
that this situation^is impossible.
x £ L £ A, so, since y intersects y , a • ’ ’x ’y*
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Similarly, since y intersects y or y
�x ’y

tec
= A.
Thus t £ A - M = L , and we have shown that a

(X -
K ).
Let W n
x€ L
For each n,
a
L c W n C Q [L u (X - K )] A c, Cl 11 d 11
and therefore

Vac n=l co
� {p| [L u (X - Kn)]} n c ’
n=l co
- ILau (X -C[ Kn)] nC
CO.
= (L a C) u (C - U K ) = L u <j>= L . .
d <t 11 CL d
n=l
co
It follows that L = (fA Wn) a C. By Lemina 19, each is equivalent n=l .
to an open set, so there exists a ($. set Ga Q X such that
I
L - G a c. a a
• • �
A similar argument shows that there exists a ($ set G^ ?= X such that
L
b “ %AC-
Next we study the properties of M . In doing this, it is 81 ‘
2 convenient to define a function tt : R �* R by setting ir(x, y) = x.
If x € M nK , then, starting at x and proceeding along y , let p (x) n * • • x I*
be the first point of X that is reached. Define h° : M AK •* R r n n n
by setting h°(x) = ir(pn(x)). If x, x’ € M a and x < x’, then, since
y cannot meet y ’ in H , it is evident that p fx) must lie to the ’x x n n
left of pn(x’); that is, ir(pn(x)) < Tr(pn(x’)). Thus h° is a strictly
increasing function on M A K^. Moreover, •
|x - h°(x) | £ 1 because yx C {z : |z - x| <_ 1}.
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So, by Lemma 20, h° can be extended to a weakly increasing function
h : X -> R. Let n
gnCx) = ,f(hn(x),l) (x € R).
f(x, is a function (of x) of Baire class £(X, Y), so, by Lemma 21,
there exists a countable set N X such that g |v is of Baire class n • n1X-N
— n
Nn> Then is of Baire class
n=l
€(M - N, Y) .
For x € M A Kn, gn(x) = f(h°(x), £) = f(pn(x)). If x € M, then
for all sufficiently large n, x € M AKn, so —
n^> f(PnW) = V>(X).
(pl., hence «pL, XT is of Baire class n t im-N’ T ‘M-N
Thus g I.. � 6n’M
’ ? + 1(M -
A
Obviously
L
so sJm-n
N, Y). It follows that there exists D G P^+2(X) such that a(m-n) = (vlM_N)-1(u)

= DA(M-N).
A a M ~ DAM. Now,
= L V L “ fG> A Cl U fG. A Cl = fG v G, 1 A C
a n ’a ’ ’ d ’ ’a d’
so
I
Ma = A n M� - P n M = D A (C - L)
= D A [C - ((GaU GJ,) A C)]
= -D-n [x - (Ga u g^] a c.
Ga and G^ are G$ , so X - (Ga u G^) is , and hence
x - (GauGb)€ P2(X) Cp£+2(X).
Therefore M& « F A C, where F € P?+2(X). Now, Ga € Gg(X) = Q2(X), and since

E, > 1, Q2(X) £ P5+2(X), so G u FGPC+2(X). But a
A = L u M - (G A C) U (F A C) = (G_ v F) A C, AAA d
so A - S a 0, where S € P^+2(X). Since every countable set is F , it o
is now easy to show that
A = T n C
for some T € P^+^(X). From the definition of C it follows that
T — X - B. Thus we have
= ACTHECE-B = E - cp-1(V) =
THE G P^+2(E), so Lemma 22 shows that is of Baire class g + 1(E, Y) . �
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Corollary. Let Y be a separable arcwise-connected metric space, f : H -> Y a Borel-
measurable function, E a subset of X, and <p: E ->Y a boundary function for f. Then
vp is Borel-measurable.
Proof, f is of some Baire class 5CH, Y), hence <p is of Baire class g + 1(E, Y),

hence (p is Borel-measurable. �
This corollary raises the question of whether a boundary function for a Lebesgue-

measurable function is necessarily Lebesgue- measurable, which we answer in the next
section.

7. Boundary Functions for Lebesgue-Measurable Functions
i
Suppose that aQ, b , a^, b^ are extended real numbers, and that a < b , a; < b..

To make the formalism more convenient we let 0—0* 1—1
(-«>)- (-») = 0 and (+<») - (+00) = 0. In other respects we adhere to the usual

conventions regarding arithmetic operations that involve -co or +00. Let
T(-a0’ bo’ al» bP = < : 0 £ y £ 1 and
(al - ao)y + ao £ x £ (bx - bQ)y + bQ}.
A set of this form will be called a closed trapezoid. We also consider <|>to be a

closed trapezoid. A set S will be called a trapezoid if there exists a closed trapezoid
T such that T1 Q S ST, where T1 denotes the interior of T relative to H^. Every
trapezoid is Lebesgue-measurable, though not necessarily Borel-measurable. *
If s, s’ are disjoint line segments having endpoints ^aQ, 0^ <a1, 1> , and <aQ’, 0>

, <a1’, 1> respectively, where a^ £a^’ (i = 0, 1), then let
T(s, s’) = T(s’, s) = T(ao„ao’; ap aJ’).
If s = s’, then we let_T(s, s’) = T(s’, s) = s. In what follows we will use the

symbol XQ as an alternative designation for the x-axis X. This will enable us to make
statements about X^ (1=0, 1) (where Xj, denotes, as before, { <x, O : x€ R}).
We omit the proofs of the following two routine lemmas.
Lemma 23. Let theline segments s’, s_, s~, s. each have one endpoint X Z O
on XQ and the other on X^, and assume that i 4 j implies that either
s. n s. = $ or s. = s.. If T(s„ s9) n T(s„ s.) 4 <l»then
1 J .1 J AZ � 4
T(s1? s3) Q T^, s2) u T(s3, s4).
Lemma 24. Letbe any set of line segments, each of which has one endpoint on Xq

and the other on X^, and no two of which intersect.
Then T(s, s’) is a trapezoid.
s,s’€£ 2
Let m denote two-dimensional Lebesgue measure in R . If E
2 Z
is a measurable subset of some line in R , let m (E) denote the linear
—— £
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Lebesgue measure of E. Let mg and mg denote two-dimensional exterior measure
and linear exterior measure, respectively; i.e., for any E cR2;
m (E) = inf {m(U) : E U and U is open); 6

67
t
and if E is.a subset of a line L, then p’ p _
m*(E) = inf {m (U) : E L and U is open relative to L).
Theorem 9. Let «C be any set of line segments, each of which has one endpoint on

Xq and the other on Xp and no two of which intersect. Let S = . Then
i m (bj = | (mUS n X ) + mHS n X )) . C 4 U U C X
Proof.” We may assume that <£ is nonempty. Let e be any positive
2 number. Choose an open set U 5= R such that S <=. U and
m(U)‘ £ m (S) + e.
Let E^ = S n X^ (i = 0, 1). Choose sets <=. X^ that are open relative to X. such

that E. Q. G. and i ii
p p
m (G.) < m\E.) + e (i = 0, 1).
1 “ C X
2
Let V be the union of all lines L Cr such that L meets both G and o
Gp It is easy to show that V is an open set. Furthermore, S £V and V n X. = G. (i

= 0, 1). Now let W = U n Y. Then i i *• ’
W is open, S C W S U, and -
E. C W n X. C G. (i = 0, 1).
If s, s’€ <£ , define s = s’ if and only if T(s, s’) Q W.
It is easy to verify by means of Lemma 23 that = is an equivalence relation. Let T

be the set of all equivalence classes. We prove that r is countable.
If s € , we let ^a^(s) , i^> be the endpoint of s on X^
(i = 0, 1). Then ,
2
s = { (x, y^^R : 0 _< y 1 and x = (a^s) - aQ(s))y + aQ(s)}.

Since s is compact and contained in W, there is no difficulty in showing that there
exists V > O .such that
£ {x, y> € R : 0 £y < 1 and
(a, (s) - a (s))y + a (s) - & . x < (a1(s) - a (s))y + a (s) + 6 } XU U 3 X v v O
<em>Q</em> w.
Let <K(s) = (a^(s) - &s, a^(s) + Sg) (i = 0, 1). A sketch will rapidly convince the

reader that if s, s’ €«C , JQ(s) n J0(s’) 4 and Jx(s) n J^(s’) 4 ‘I’, then T(s, s’) Q W, so
that s = s’. Thus
(Jo(s) x ji(s)) A CJ0(s’) x Jx(s’)) 4 <> =*>. s’ = s’.
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For each C € F, choose s(C) € C and let
Q(C) = J0(s(C)) x J^sfC)).
Then C. 4 C9 =^Q(C.) n Q(C9) = $. Since each Q(C) is a nonempty 2
open subset of R , this implies that F is countable.
If C6F, let
T(C) = VJ T(s, s’), s, s’GC
By Lemma 24, T(C) is a trapezoid. Also,
(35) CCt(C)$W.
Suppose that C^, C2 £F and 4 C2’ ^e claim that
T(C..) T(C9) = <j>. Assume that T(C.)nT(C9) 4 • Then there exist
S„ sn ‘ € C. and s9, s9’ £ C9 such that T(sn, s’) A T(s9, s9’) 4 4» •
By Lemma 22,
T(s1, s2) C T(s1, Sj’) u T(s2, s2’) C W,
so that s. = s9; a contradiction. Therefore T(C.) A T(C9) = <|>. X I X £»
Let . IL (C) = T(C) a X± (i.= 0, 1). . Then IL (C) is an interval and
(36) E. C K. (C) C.W AX. CG (i = 0, 1).
<sup>1</sup> cer
Furthermore, C. Co implies that K.(C.) A K.(CL) = $. Using the X Z XX X £»
formula for the area of a trapezoid, we find that
’ 4 [A U K (O) + im^C U K (C))]
= cgr C€r
= s’ 4 (m*(K (O) + m£(K (C))) cer z
= E m(T(C)) = m(U T(C)). cer cer
Let a = 4 [m\U + KiCC))] z cer cer
= iucI^Jtcc)).
cgr
According to (35), S Q \) T(C) Q W Q U, so that cer
(37) m (S) < a < m(U). < in (S) + e. e — — c
By (36),
(38) | (m*(Eo) + ^(Ep) < a < | (m£(GQ) + m£(G1))
<7 CmhE ) + m*(E )) + e.
Since e is arbitrary, inequalities (37) and (38) imply that
m (S) = | (m*(E ) + m*(E )). � :

One wonders to what extent a result resembling the foregoing theorem might
be obtainable without the hypothesis that no two of the line segments intersect.
The’following example is relevant to this question. Let Mq be a residual set of measure
zero in/XQ and let be a.residual set of measure zero in Let <xq, y\ be.any point of Hj.
We claim that there is . a line segment passing through ^xQ, y^ that has one endpoint
in and the other in M^. For 0 € (0, it), let
Fife) = <(1 - y0) ctn 6 + xo, 1> and
f0(q) = <x0 - y0 ctn e> 0 >•
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Then F^ is a homeomorphism of (0, it) onto X^, so Fq1(Mo) and F^^(M^) are
both, residual sets in (0, it). Choose a £ Fo^Mo) HF^^(M^). Let L be the line whose
equation is
x = xq + (y - yo) ctn a.
Then L passes through the points ^xq, yj) , FQ(a) and F1(a), so that LaH^ is the

desired line segment. Let be the set of all line segments having one endpoint in Mq and
the other in M^. Let S = Then S r\ Xq and S f\ X^ both have measure zero, but, as
we have just
1 - ’
shown, S, so that S has infinite measure. See Problem 5 at the end of this paper.
Lemma 25.
For every e > 0 there exists a strictly increasing real-
valued function h on R such that h(R) has
measure zero, and, for every
real x, |x - h(x)| £ e.
I +” I
Proof. For each integer n, let I = [ne, (n + 1)e]. Then In = R« n^ioo
There exists a strictly increasing function f : [0, 1] •* [0, 1] such that m\f([0,1]))=

0. For example, such a function may be defined as follows. Any number in [0, 1) may
be written in ti& form
•$,a9a,.. .a. … (binary decimal),
A bi O IX
where the decimal does not end in an infinite unbroken string of 1’s.
Set.
f (-a..a„a,.. .a …) = •b-.b-b .. .b … (ternary decimal), � x z n ’ x z o n
where b. = 0 if a. =0 and b. = 2 if a. =1. i i i i e
Set f(l) = 1. Then f maps [0, .1] into the Cantor ternary set, so
£
m (f([0, 1])) = 0. It is easily shown that f is strictly increasing.
For each n, it is easy to obtain from f a function f : I �* I 9 J n n n
£
such that f is strictly increasing and m (fn(In)) = 0. Set
h(x) = f^fx) for x C(ne> Cn + 1)£]-
There is no difficulty in proving that h has the required properties.®
Theorem 10. There exists an indexed family £yv}v Y simple arcs X X C A
such that
(i) for each x g X, y is an arc at x X
(ii) x 4 y =^yv nyvM
(iii) I J y is a set of measure zero, x € X X

Proof. For each natural mumber n, let hn : R •* R be a strictly increasing function
such that hn(R) has measure zero and, for every x, |x - hnW | For every x € R, let
sn(x) be the line segment joining the point ^hn(x), to the point ^hn+^(x), Since
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< hntx2] ><sup>x</sup>l < <sup>X</sup>2^hn+l(Xl) < hn+ltx2)’
we see that x^ implies sn(x^) n Sn^) = <|>. Let Sn = VJtsn(x) : x£ R}. Then
S n X C{(x, : x€ h (R)}
n n — ’ ’ n ’ nk ’
and S n X . C. {/x, -A-*5 : x g h n (R)}, n n+1 - x » n+1 / n+lk J *
g £
so m’(S n X ) = m (S n X .) = 0. It is easy to deduce from n n n n+1
Theorem 9 that ;
1’1 If 2
VSn> • < K - nJT ’ T CVSn ” V * VSn n Xn+1» ’ ’•
For x € X, let y = {x} U I ) s (x). Since \h (x), — / •* x, y is x n n n / n x
an arc at x.
00
®e(U Yx) < meW + me(U SJ
e x£X x e e n=l n . co
£m (X) + E m (S ) = 0, e n=l e n
so y is a set of measure zero. � x6X x

Corollary. Let <p be an arbitrary function mapping X into any topologi
cal space Y having an element called 0. Then there exists a function
f : H -> Y such that f(z) = 0 almost everywhere and ipis a boundary
function for f.
Proof. If {y } Yth® family of arcs described in Theorem 10, let X X £ a f(z) =0 if

z is in no y
X
f(z) = <f>(x) if z €Y . A
Then f is the desired function.®
Corollary. There exists a real-valued Lebesgue-measurable function f defined in H

having a nonmeasurable boundary function defined on X.

SOME UNSOLVED PROBLEMS
1. If A is an arbitrary set of type Fa5 in X, does there necessarily exist a real-valued

continuous function f defined in H having A as its set of curvilinear convergence? If
<p is an arbitrary real-valued function of honorary Baire class 2 on A does there exist
a continuous real-valued function f defined in H having A as its set of curvilinear
convergence and (p as a boundary function?
2. (First proposed by J. E. McMillan [10]). If A is any set of type 2
Fag in X and if (pis any function of honorary Baire class 2(A, S ), 2
does there necessarily exist a continuous function f : H -> S having A as its set of

curvilinear convergence and <p as a boundary function?
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3. If f is a real-valued Borel-measurable function defined in H, is the set of curvilinear
convergence of f necessarily a Borel set? What if f is assumed to be of Baire class 1?
• 3 -
4. Let S = { <x, y, z) g R : Z >0}. If f is a function defined in S, we define the

set of curvilinear convergence of f in the obvious way. If f is continuous, is its set of
curvilinear convergence necessarily a Borel set? Is it necessarily of type F ?
5. Let <£ be a set of line segments each having one endpoint on Xq and the other

on X^, and let SUz . Assume that S is a Borel set.
£ £
If m (S n XQ) and m (S n X^) are known, what lower bound can be given for m(S)?

. A solution to this problem might be helpful in attacking a problem of Bagemihl,
Piranian, and Young [3, Problem!].
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NOTE ON A PROBLEM OF ALAN SUTCLIFFE
T. J. KACZYNSKI, The University of Michigan
If n is an integer greater than 1 and ah, • • , ab ao are nonnegative integers, let
(ah, • • • , ai, ao)n denote ahnh + • • • + ain + ao.
Thus if O;;;ai;;;n-1 (i = O, • • •, h), then ah,^^, a1, ao are the digits of the number

(ah, • • •, ab ao)n relative to the radix n. Alan Sutcliffe studied the prob- ,
lem of finding numbers that are multiplied by an integer when their digits are

reversed (Integers that are multiplied when their digits are reversed, this Magazine, ?

1964] MATHEMATICAL NOTES 653
Similarly,
(3) 6* = - 1.
Taking q = characteristic of F (g-l=O), choose t and r as specified in the lemma.

Using relations (1), (2), (3), we have
(Z + ra + i)(r» + 1 + ria + lb) = r(Z2 + r* + l)a + (Z2 + r2 + 1)6 = 0.
One of the factors on the left must be 0, so for some numbers u, v, w, u 0 (mod q), we

have w+va-\-ub = Q, or b = — u~lva — u~lw. So b commutes with a, a contradiction.
We conclude that S is not a generalized quaternion group, so 5 is cyclic.
Thus every Sylow subgroup of F* is cyclic, and F* is solvable (1, pp. 181— 182). Let

Z be the center of F* and accnme 7F*. Then F*/Z is solvable, and its Sylow subgroups
are cyclic. Let A/Z (”fit.. ZC^) be a minimal normal subgroup of F*/Z. A/Z is an
elementary abelian group of order pk (p prime), so since the Sylow subgroups of F*/Z
are cyclic, A/Z is cyclic. Any group which is cyclic modulo its center is abelian, so A is
abelian. Let x be qny element of F*, y any element of A. Since A is normal, xyx~’(E.A,
and (1 +x)y = z(l +x) for some z£Z. An easy manipulation shows that y — z = zx —
xy = (z — xyx~’)x.

1 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,
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If y — z = z — xyx~’ 0, then <em>y = z = xyx~<sup>l</sup>,</em> so
<em>x</em> and <em>y</em> commute. Otherwise, <em>x (z — xyx~l)~’(y</em>
— z). But A is abelian, and z, y, xyxr’^A, so x commutes with y. Thus we have proven
that A is contained in the center of F*. a contradiction.
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y e A(n + 1, m[n+ 1], k[n + 1], f [n 4- 1]) C Un+1 c Q(n 4-1, m[n+ 1]),
2tt i 1
and therefore each point of yn has distance less than from y. Now
^+~F 0 as n -* °°; hence, if we set y = {y} U Un=i yn, then y is an arc with
one endpoint at y.
Since Un and Un+1 have a point in common,
f-1(* S(^> pk[n])) and rl(S(^Tl’ Pk[n+1]))
have a common point, and hence
S(^>Pk[n]’) and S(^+l’ Pk[n+1])
have a common point. Therefore, if p is the metric on K, then
< \ 1 . 1 / 1 , ^Pk[np Pk[n+1] — 2n 2n”^

4 (1957) 155-156.
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Explanation by John D. Bullough
A function p(e) defined on the unit circle is a boundary function for a function f(z)

defined in the unit disk provided for each e, f(z) has the limit p(e) at e along some curve
lying in the unit disk and having one endpoint at e. Any two boundary functions for the
same function f differ at only countably many points by the ambiguous-point theorem
of Bagemihl; and a boundary function for a continuous function differs from some
function in the first Baire class at only countably many points. In answer to a question
of Bagemihl and Piranian, the author constructs a bounded harmonic function having
a boundary function that is not in the first Baire class. He shows that nevertheless
the set of points of discontinuity of such a boundary function is a set of the first Baire
category.

Article by Ted
BOUNDARY FUNCTIONS AND SETS OF CURVILINEAR CONVERGENCE

FOR CONTINUOUS FUNCTIONS
BY
T. J. KACZYNSKI
Let D be the open unit disk in the complex plane, and let C be its boundary, the

unit circle. If x e C, then by an arc at x we mean a simple arc y with one end point at
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x such that y-{x}^D. If /is a function mapping D into some metric space M, then the
set of curvilinear convergence of f is defined to be
{x e C: there exists an arc y at x and there exists a point pEM such that /(z) -> p

as z x along y}.
If is a function whose domain is a subset E of the set of curvilinear convergence of /,

then</> is called a boundary function for / if, and only if, for each x e E there exists
an arc y at x such that /(z) -></> (x) as z -> x along y. Let S be another metric
space. We shall say that a function</> is of Baire class 1(S, M) if
(i) domain ^ = S,
(ii)range and
(iii) there exists a sequence of continuous functions, each mapping S’ into M, such

that <f>n -> <£ pointwise on S.
We shall say that is of honorary Baire class g 2(S, M) if
(i) domain <£ = S,
(ii)range</> ^Af, and
(iii) there exists a countable set N^S and there exists a function 0 of Baire class

1(5, Af) such that <£(x) = ^(x) for every xeS-N.
It is known that if/is a continuous function mapping D into the Riemann sphere,

then the set of curvilinear convergence of / is of type Fa69 and any boundary function
for/is of honorary Baire class ^2(C, Riemann sphere). (See1,2,3,4, [9].) J. E. McMillan5
posed the following problem. If A is a given set in C of type Fad, and if is a function
of honorary Baire class ^2(A, Riemann sphere), does there always exist a continuous
function / mapping D into the Riemann sphere such that A is the set of curvilinear
convergence of / and is a boundary function for /? The purpose of this paper is to give
an affirmative answer to McMillan’s question. However, the corresponding question for
real-valued functions remains open. (See Problems 1 and 2 at the end of this paper.) In
proving our result, we first give a proof under the assumption that</> is a bounded
complexvalued function, and we then use a certain device to transfer the theorem to
the Riemann sphere. As we shall indicate in an appendix, the same device can be
Received by the editors September 20, 1968.
107
used to transfer certain results concerning real-valued functions of the first Baire

class to the case of functions taking values on the Riemann sphere.
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2 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,

4 (1957) 155-156.
3 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-

309.
4 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,

1961.
5 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,

1961.

104



Our proof is divided into several major steps, which are labeled (A), (B), (C), etc.
The proofs of some of the major steps are divided into smaller steps, which are labeled
(I), (II), (III), etc. The results (A) and (B) are taken from the author’s doctoral
dissertation6.
Throughout this paper we shall use the following notation. R denotes the set of real

numbers, S2 denotes the Riemann sphere, and Rn denotes w-dimensional Euclidean
space. Points in Rn will be written in the form <xb x2,..xn> (rather than (x15 x2,...,
xn)) in order to avoid confusion with open intervals of real numbers in the case n =
2. The empty set will be denoted by 0. When we speak of a complex-valued function,
we mean a function taking only finite complex values. The closure of a set E will be
denoted either by E or by Cl E. If I is an interval of real numbers, then Z* denotes
the interior of I. If p is a point of some metric space and r e (0, 4-oo), then S(r, p)
denotes the set of all points of the space having distance (strictly) less than r from p.
We define
Q = {(x,y)eR2 : -1 x 1,0 < y 1}, X = { <x,0>: -1 < x < 1}, H = { <x, y>e R2 : y

> 0}.
It will be convenient to identify <x, 0>with the real number x, and X with (—1,

1). If f is a complex-valued function defined in Q, then we shall understand the set
of curvilinear convergence of f to mean the set of all x e X for which there exists an
arc y at x (contained in the interior of Q except for its end point at x) such that f
approaches a finite limit along y. If a e X, e > 0, and 0 < 0 < then we let
s(a, e, 0) = {<x, y) e R2 : 0 < y < e, a—y ctn 0 < x < a+y ctn 0}.
Thus s(a, e, &) is the interior of an isosceles triangle in H with apex at a.
(A) If A^X is a set of type Fa6i then there exists a bounded continuous realvalued

function g defined in Q such that
(i) for each xe A, g(z) -> 0 as z approaches x through s(x9 1, |tt), and
(ii) if xe X, and if there exists an arc y at x such that g(z) -> 0 as z approaches x

along y, then xe A.
(I) Let E± and E2 be two sets on the real line. A point pE R will be called a splitting

point for Ex and E2 if either
(i) Xi ^p for all x± e Ey and p x2 for all x2 e £2, or
(ii) x2^p for all x2 e E2 and p^x1 for all xr e E±.
We will say that E± and E2 split if and only if there exists a splitting point for Et

and E2.
(II) By a special family we mean a family of subsets of X such that
(i) & is nonempty,
(ii) & is countable,
(iii)each member of & is compact,
(iv)if E, Ftthen either E=F, Ec\ F=0, or E and F split.

6 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-
309.
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(III) If £�£ JTis an Fa set, then there exists a special family & such that E= (J
Proof. We can write E= (Jn= i where Ai = 0, An is closed, and ^4ns^n+1 for all

n. Observe that if I is any open interval contained in X, then there exists a countable
family {Jn}”= i of compact intervals contained in X such that 1= IJ ”= i A, and n/m
implies that Jn and Jm split. Since X-An is a countable disjoint union of open intervals,
it follows that we can choose (for each ri) a family
i
of compact intervals such that X— An— U”i and <em>j£k</em> implies that InJ

and Zn,fc split. Let
= {Ai} u {InJ n ^tt+1 : n = 1, 2,…; j = 1, 2,…}.
Then SF is a countable family of compact sets, and
E = u A = Ai V U A+1 n (X—An) n=1 n=1
= Ai u (J (J ^4n+1 ri Inj n=l 1=1
=
Let Fi and F2 be any two distinct members of If either Fx or F2 is Ax = 0, then Fi

and F2 are automatically disjoint. If neither Fr nor F2 is A, then we can write
Ei = 4i(i),«i> 24n(i)+i,
E2 — fn<2)J(2) Anm + 1.
If n(l)<n(2), then n(l)+1 ^n(2), so
Ez </em> fn<2),/(2) ^n(2) + l £ X— ^4n(2) — X— ^n(l) + l — X— Fi,
and therefore F± and F2 are disjoint. If n(2)<«(l), a similar argument shows that

Fi and F2 are disjoint. Now suppose n(l)=n(2). Then, since Fi/F2, we have j(l)/j(2).
So /n(i).«2)=A(2),/(2) and Lxd.xi) split, and consequently Fr and F2 split. We have
shown that any two distinct members of & either split or are disjoint, so
is a special family.
(IV) Let A £ X be a set of type Fa!>. Then there exists a sequence of special families

{^}”=i such that
(0 ^An^JU^n),
(ii) if 1 and Ee^+1, then there exists Fewith E^F.
Proof. There exist setsAi 2^22^32 • • • such thatA </em> A"=i <em>A<sub>n</sub>.</em>

By (III), we can choose (for each n) a special family <em>A<sub>n</sub></em>
such that <em>A<sub>n</sub> (J <^n- Let For 1, let
•^+1 = {fn E : and £e«fn+1}.
By induction on n, one can show that each is a special family and that An = (J It

is clear that the other conditions are satisfied.
(V) Suppose that J is a nonempty interval with X, and let a, b (a b) be the end points

of J. By Trap (J, e9 0) (where 0 e (0, -^r) and e > 0) we mean the trapezoidshaped
open set defined by
Trap (J, e, 0) = {<x, : 0 < y < e, a+y ctn 0 < x < b-y ctn 0}.
For 0 e (0, i^) let Tri (J, 0) be the closed triangular area defined by
Tri (J, 0) = {<x, : y 0, a+y ctn 0 x b—y ctn 0}.
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If K is a nonempty compact subset of X, let J(K) be the smallest closed interval
containing K. If e > 0 and 0</?<a<|77, then we define
B(K9 e9 a, 0) = Trap (/(£), e, a) - U Tri (Z, 0)9
leS
where</ denotes the (possibly empty) set of disjoint nonempty open intervals whose

union is J(K)—K.
We state without proof the following readily verifiable facts ((VI) through (XVIII)).
(VI) s(x9 e9 0) is an open subset of H.
(VII) Cl [s(x, s, 0)] n y={x}.
(VIII) If e<e and 0’<0, then Cl [s(x, e, 0)] n H^s(x9 e9 0’).
(IX) If x/j and c, 0 are given, then there exists 8>0 such that, for every 77 8, j(x,

e, 0) and s(y9 t?, 0) are disjoint.
(X) B(K9 e9 a, 0) is an open subset of H.
(XI) If K± and K2 split, then, for any e2, a, and 09 B(K19 s19 a, £) and Z?(/C2, e2,

0) are disjoint.
(XII) If K+ and K2 are disjoint compact subsets of X9 and if e9 a, 0 are given, then

there exists 8 > 0 such that for every 77 8, B(K19 e9 a, 0) and B(K29 77, a, 0) are
disjoint.
(XIII) Cl [B(K9 e, a, 0)] n X^K.
(XIV) Suppose that K^K, c>£1>0, and 0<j3<^1<a1<a<7r/2. Then Cl [B(^, 819

a19 0,)] n H^B(K9 8, a, 0).
(XV) Suppose that a<0<fyr and x^J(X)*. Then, for any e9 e19 and 09 B(K, e, a,

0) and s(x9 e19 0) are disjoint.
(XVI) Suppose that x$K and that e, a, 09 0 are given. Then there exists 8>0 such

that for every 8, s(x9 77, 0) and B(K9 e9 a, 0) are disjoint.
(XVII) Suppose that x$ K and that 8, a, 09 0 are given. Then there exists s > 0

such that for every s(x9 8, 0) and B(K, ^9 a, 0) are disjoint.
(XVIII) Suppose that xe Kc\J(K)* and O<0<a<0<|7r. Let e be given. Then there

exists 8>0 such that for every 77 8, Cl [s(x, rj9 0)] n B(K9 e9 a, 0).
(XIX) If & is a special family, let «^2 be the set of all members of & that have two

or more points, and let E(^) be the set of all end points of intervals J(F)9 where F e
& and f / 0.
Suppose that O</3<a<0<|w, and that SF is a special family. By a pair of special a,

fl, 0 functions for I mean a pair («, 8), where e and 8 are positive real-valued functions,
the domain of e is E(&), the domain of 8 is &2, and
(i) for each > 0, there exist at most finitely many F e &2 such that 8(F) -q;
(ii) for each q > 0, there exist at most finitely many x e E(&) such that e(x) t];
(iii) if x, x’ e E(^) and x#x’, then s(x, «(x), 0) and s(x’, «(x’), 0) are disjoint;
(iv) if F, Ke&2 and F*K, then B(F, 8(F), a, fl) and B(K, 8(K), a, fl) are disjoint;
(v) if x e E(&) and FeF2, then s(x, e(x), 0) and B(F, 8(F), a, fl) are disjoint.
(XX) Let & be a special family and suppose that O</3<a<0<|?r. Then there exists

a pair of special a, fl, 0 functions for
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Though a formal proof of this statement is lengthy, it requires no originality, so we
omit the details. The idea is to arrange the members of & in a finite or infinite sequence
Fx, F2, Fs,..., and then define e and 8 inductively. One makes use of statements (IX),
(XI), (XII), (XV), (XVI), (XVII).
(XXI) Let & be a special family, and suppose O</?<a<0<£n-. Let («, 8) be a pair

of special a, fl, 0 functions for If e1( 8j are two real-valued functions having domains
E(&) and &2 repectively, and if
0 < ej(x) g «(x) for all x e E(&’),
0 < 8X(F) 8(F) for all Fe&2,
then («!, 8J is a pair of special a, fl, 0 functions for 3F
The proof of this statement is trivial.
(XXII) We now proceed to the proof of statement (A) itself. Let A be our given F06

set. By (IV), we can choose a sequence of special families such that A = (1“=i (U ^n),
and for each Ke + 1 there exists Fe with K^F.
Let {j8n}“=i be a strictly increasing sequence in (0, jw) coverging to |?r.
Let {an)„=i be a strictly decreasing sequence in (in-, Jw) converging to in.
Let {^n}n=i be a strictly increasing sequence in (in, jw) converging to
Let En=E(^n).
Let (e(l, •), 8(1, •)) be any pair of special aj, fllf 0Y functions for
Now suppose that for each k^n we have chosen a pair of special «k, Pk, Qk functions

(e(k, •), 8(k, •)) for in such a way that
(i) whenever 1 ^k^n — 1, x e Ek+1, FeFk, and x e Fc\ J(F)*, then
Cl [s(x, e(k+1, x), 0k+i)] n H £ B(F, 8(k, F), ak, flk);
(ii) whenever l^k^n-1, xe Ek+1, and x e Ek, then
Cl [s(x, e(k+1, x), flk+1)] H £ s(x, e(k, x), 0k);
(iii) whenever KKn-1, Xe («^+i)2, Fe (^)2, and K^F, then
CI [B(K, 8(k+l, K), ak + 1, flk + 1)] B(F, 8(k, F), ak, flk).
Then we construct (s(n+l, •), 8(«+l, •)) as follows. Let (e, 8) be any pair of special

an+1, £n+1, 0n+1 functions for «^+1. If x e En+1 — En9 then for some unique Fe(^,)
7

, xe
F C\J(F)*. By (XVIII), we can choose f(x)>0 so that ??^f(x) implies
Cl [s(x, rj9 en+1)] B(F, 8(n, F), an9
We set e(n+1, x) = min {c(x), f(x)}. On the other hand, if x e En+1 n En9 then we

set e(n+1, x) = min {e(x), ^e(n9 x)}.
If Ke («^+i)2, then there exists a unique Fe(^n)2 with K<^F. Set
8(«+1, K) = min {8(F), |8(n, F)}.
By (XXI), (e(n+1, •), 8(n+1, •)) is a pair of special an + 1, £n + 1, 0n + 1 functions

for &n + 1, and, by (VIII) and (XIV), conditions (i), (ii), (iii) are still satisfied when
n is replaced by « + l. Thus we can inductively construct a pair (e(n9 •), 8(n, •)) of
special an, ftn9 0n functions for in such a way that (i), (ii), and (iii) are satisfied for
every n.
Let
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Un = r u s{x9 8{n9 x), 0n)i U r U b(f9 8(w, f), an, pn)]. Lxe£n J LFe^n)2 J
Then Un is open. For fixed n9 all the various sets s(x9 e(n9 x), 0n) (x e Fn) and

B(F, 8(n, F), an, 0n) (Fe(^)2) are open and pairwise disjoint, so that every component
of Un is contained in one of the sets s(x9 e(n9 x), 0n) (x e Fn) or B(F, 8(n9F)9an9pn)
(Fe(^n)2). It therefore follows from (VII) and (XIII) that if W is any component of
Un9 then
(1)
From conditions (i) and (ii) in the definition of a pair of special a, £, 0 functions,

it follows that
Un n H = r U Cl [s(x, e(n9 x), 0n)] n 771 u [ J Cl [B(F, 8(w, F), an, &)] n 771.
l*-G^n J Lre(^n)2 J
Consequently, conditions (i), (ii), (iii) in our inductive construction of (e(n9 •), 8(«,

•)) (together with the fact that x e Fn+1 — En implies x eF J(F)* for some Fe («^)2)
imply that Un+1 n Un for every n.
By Urysohn’s Lemma there exists a continuous function gn: H -> [0, 1] such that

gn(z) = 1 for z e H— Un and gn(z)=0 for z e l/n+1 n 77. Let
g& = 2 n=l
Then 0^g(z)^ 1, and the series converges uniformly, so g is continuous in H.
If z e 77- Un9 then z e 77- Um for every m n9 so that 1 =gn(z)=gn + i(z)=gn+2(z) =

• • •, and hence
Also, if z e t/B+1, then z e Uu U2, � �Un+1, so that 0=gi(z)=g2(z) = • • • =gn(z),

and
(3) g(z) 2 ®m = ®n (zel/n+x).
m = n + l
Let x0 e A be given. We must show that g(z) -> 0 as z approaches x0 through s(x0,

L i77”)- Take any natural number n. Since x0 g (J^+1, it follows that either x0GFn+1
or else x0 g FnJ(F)* for some Fe(Jn+1)2. In the first case, set rj = e(n +1, x0). In the
second case, (XVIII) shows that we can choose rj>0 small enough so that
s(x0, 7], >77) c B(F, 8(h+ 1, F), an + i, +
Suppose <x, y>e s(x0, 1, far) and y<rj. Then, in the first case,
<X, y) 6 s(x0, 7), >77) Q s(x0, e(n+ 1, Xo), 0n + l) ^n + 1,
and, in the second case,
<x, y) g s(x0, 7J, <77) C B(F, 8(n +1, F), an+1, pn+1) <= Un+1.
Thus, referring to (3), we see that g(x, y) (|)n whenever <x, y) e 5(x0, 1, $77) and

y <t]. Therefore g(z) -> 0 as z approaches x0 through s(x0, 1, $77).
Let Xi be a point of X, and assume there exists an arc y at xY such that g(z) -> 0

as z approaches x± along y. Then y has a subarc y with one end point at Xi such that
By (2), /-{x^^^. Therefore, by (1), X1 e
U «^. Since n is arbitrary,
*1 6 A (U ^n) = A. n = 1
Thus, by restricting g to Q we obtain the desired function.
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(B) Let A be a subset of X of type Fad, and let be a bounded complex-valued function
of honorary Baire class ^2(A, F2). Then there exists a bounded continuous complex-
valued function h defined in Q such that, for each x e A, there exists an arc y at x with
y—{x}^s(x, 1, $77) and
lim h(z) = <£(x).
(I) Let Z be a bounded open interval in R, and let/: 7-> 7? be a bounded, strictly

increasing function. Then there exists a continuous, weakly increasing function /: R-^
R such that f(f(x))=x for every x e I. (This result is probably not new, but I do not
know of a reference for it, so I am obliged to prove it here.)
Proof. Let Z=f(I), let c=inf Z, and let <7=supZ. Observe that Zs(c, d), and that

/-1: Z-> I is strictly increasing. I assert that for each x e (c, d)
(4) sup/- \(c, x] n Z) = sup/- \(c, x) n Z).
If x £ Z, the equation is trivial. Suppose x e Z. Then
c < y < /-1(x) => (f(y) < x and f(y) eZ),
so that (c,/-1(x))£/-1((c, x) Ci Z). Hence
sup/-1((c, x)r\Z) f~\x) = sup/-1((c, x] n Z).
The opposite inequality is trivial, so (4) is established.
I also assert that for each x e (c, d)
(5) inf/-X((x, d) n Z) = sup/- ‘((c, x] n Z).
Obviously,
inf/’XCx, d) n Z) sup/-x((c, x] n Z).
Take any y>sup/-1((c, x] nZ). If /(y)^x, then f(y) e (c, x] n Z, and so yef~K{c, x]

H Z), a contradiction. Thus f(y)>x and f(y) e (x, d) n Z. Therefore y 6/-1((x, d) r> Z),
so that inf/-1((x, d) c\Z)^y. In view of the choice of y, this implies that
inf/’^x, d) O Z) sup/-x((c, x] n Z),
and (5) is established.
Define/* on (c, d) by
/�(x) = sup/-1((c, x] n Z) (x e (c, d)).
It is clear that /* is weakly increasing and that f*(f(x))=x for every xeZ. The

continuity of/� can easily be deduced from the equations
sup/((c, x)) = /(x), inf/*((x, d)) = /�(x),
which are established as follows:
sup/*((c, x)) = sup sup/-1((c, y] n Z) c<y<x
= supx) Cl Z)
= sup/-1((c, x] n Z)
= /*(x),
inf/*((x, d)) = inf sup/-1((c, y] n Z) x<y<d
= inf inf/-x((y, J) nZ) x<y<d
= sup/-1((c, x] n Z) = /*(x).
We now extend/* to all of R by setting
/*(x) = infd)) if x c,
/(x) = sup/((c,</)) if x >d, and we are finished.
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(II)Suppose that M is a metric space and that u: M ->R is a function having the
following property. For every sequence {pn} of points of Af, every pe M, and every y e
R u {-oo, +oo}, if pn->P and u(pn) -> y as n -> oo, then y g R and u(p)=y. Under
this hypothesis, u is continuous.
Proof. Let {pn} be any sequence of points in M converging to a point pE M. We

have only to show that u(p^ -> u(p). But suppose u(pn) t/(p). Then there exists a
subsequence {u(/?n(fc))} and there exists y e R\J {—as, +oo} such that y± u(p) and
w(/*n(k)) y as k -> oo. Since pn(fc) ->p as k -> oo, this contradicts our hypothesis.
(III)Let A^(-1,1) be of type Fad9 and let be a complex-valued function of Baire class

1(?1, R2). Then there exists a sequence {gn} of continuous functions, each mapping R
into R29 such that for each x e A, gn(x) -> i/j(x) as n -> oo.
Proof. This can be proved in a more general context, as shown in8. For a quick proof

of the special case stated above, we can refer to a theorem of Bagemihl and McMillan
.[1, Theorem 2], which tells us that there exist continuous real-valued functions and
f2 defined in H such that, for each x e A9 has angular limit Re (0(x)) at x and f2 has
angular limit Im (^(x)) at x. For each x e R9 set
gn(x) = fdx, + if2(x, iy
\ n) \ n/
(IV)Now we proceed to the proof of statement (B). Let 0 be a function of Baire

class 1(A9 K2) and let £ be a (possibly empty) countable subset of A such that <£(x)
= ^(x) for each x e A —E. Let N be an infinite countable set with E^N^X. Let w be
a real-valued function defined on N such that w(s) > 0 for each se N and
2 M<s) < 21/2 —1. sgN
For each xe X=(— 1, 1), let N(x)={seN: — l<s<x}. Define f on (—1,1) by setting
f(x) = x+ 2 HO-
seN(x)
Then/is a bounded, strictly increasing function on (— 1, 1), and |/(x)—x| < 21/2—

1. By (I), there exists a continuous, weakly increasing function f*: R-+ R such that
f*(f(x))=x for each x e ( -1, 1).
Let
Ho = {<x,y>6jR2:O<y
For fixed <x, y) e Ho,
u_fJx-(l-y)u\
\ y /
is a strictly increasing continuous function of u that approaches +oo as u -> +oo

and — oo as u -> — oo. Consequently there exists precisely one number u(x, y) that
satisfies the equation
(6) <&.y) - o.

8 F. Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Z., 5 (1919) 292-
309.

111



I assert that u(x, y) is a continuous function on Ho. We show this by using (II).
Suppose that <x, y>e Ho, u0 e E u {-oo, +oo}, {<xn, yn>}£/f0, On, yn> -> <x, y>,
and u(xn, yn) -> w0- If u0 = +°o, then, as n ->oo,
xn-(l-yn)u(xn, yn) ; x yn ’
and so
U<Xn, A)-/*(Xn~(1~^XXn’K)) +«>,
\ zn /
which contradicts (6). So i/0^ +°o, and a similar argument shows that mo0 — oo.

Thus, by (6),
0= lim [u(xn, K)-/*(Xn~° ~y”)u(x” n->co L \ yn /J
-
Consequently u0 = u(x, y). By (II), u is continuous.
From (III), there exists a sequence {gn} of continuous complex-valued functions

defined on R such that gn(x) -> 0(x) as n -> oo for each x e A. For n 2, define
h0(x, y) = (yn(n +1) -n)gn(u(x, y)) + ((n +1)-yn(n + l))gn+j(u(x, y))
when 1/(72 4-1) ^y 1 /«. Then h0 is continuous on Ho. Let {sn}n=i be all the

elements of N, where w/zn implies sn^sm. Let
rn = inf /(x), X>Sn In = SUP /(X) = f(sn), x < sn
Zn = if sneE,
z„ = 0 if sn $ E.
Notice that rn—/n>0. If x and y are real numbers, define xvy=max{x, y} and x

Ay=min {x, y}. For <x, y>6 Ho, set
A„(x,y) = [(1 -ny) v O]I(1
rn+ln-2sn+2
v o zn.
L \ ’n h
Then An is continuous in Ho. Observe that An(x, y)=0 when y^l/n. Using this fact,

it is easy to show that, if we set
oo
hl = h0+ 2 �n, n = 1
then is defined and continuous on Ho.
Let p be any point of A. The line (7) passes through <p, 0>, and, since |/(p) —

p| <21/2— 1 =ctn fw, the part of this line which lies in Ho is contained in s(p, l.fw).
We show that hY approaches along this line. By substituting (f(p)—p)y+p for x in the
expression for An(,v, y), one obtains
An(x,y) = [(1 - ny) V 0]
(8) 17
rn + 4 + 2(-
?n-
If P^sn, then f(p)^ln, and one can verify directly that (8) vanishes. Ifp>sn, then f(p)

rn, and again one can verify directly that (8) vanishes. Thus An(x, y) vanishes along
that part of the line (7) which lies in H.
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Solving (7) for f(p), we find that, along the given line,
/(p) = (x-(l-y)p)ly, and hence
p = /(/�(?)) = /((x-(i -y)p)ly)- .
Therefore (if 0<y^|) p=u(x, y). Hence, if <x, y>satisfies (7), n^2, and l/(n+l) 1/n,

then
h0(x, y) = (yn(n +1) - n)g„(p) + ((»+!)-yn(n + l))gn+j(p),
so that A0(x, y) lies on the line segment joining gn(p) to gn+i(p)- It follows that

/z0(x, y) approaches 0(p) as <x, y>approaches p along the line (7). Since each An
vanishes on the part of this line lying in H, hr(x, y) also approaches ^(p) along this
line.
Let sm be any point of E. The definition of f shows that
|/(x)-x| 2 w(5)
seN
for all x, and from this it easily follows that
K-Jml 2 l/m“Jml = 2
sgN sgN
Hence

So the part of the line
(9)
that lies in Ho is contained in s(sm, 1, fir). We show that approaches ^(sm) as z ->

sm along this line. Substituting the value of x given by (9) into the expression for An,
we obtain
An(x,y) = [(1-ny) V 0]
(10)
�n
If sm<sB, then /m<rm£/n<rn, and one can verify that (10) vanishes. If sn<sm, then

ln<rn£lm<rm, and again one can verify that (10) vanishes. Thus, for n/m, An(x, y)=0
when <x, y>lies on the line (9) and in H.
If we take n=m in (10), we obtain
Am(x,y) = [(1-wy) v 0]zm.
Therefore Am(x,y) approaches zm=^(sm)-^(sm) along the given line.
Take any <x, y>e Ho satisfying (9), and take any a and b satisfying
(11) a < sm < b.
Then f(a) ^lm< |(rm+/m) < rm £f(b), so that
(f(a)-sm)y+sm < x < (f(b)—sm)y+sm;
from which we deduce that
/(a) < (x-(l -y)sm)ly < f(b).
Since f* is weakly increasing,
a = £f*((x-(l-y)Sm)ly) £f*(f(b» = b.
Because a and b were taken to be any two numbers satisfying (11), we conclude

that
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sm = f*(.(x-(l-y)sm)/y),
whence it follows that u(x,y)=sm. Thus
h0(x, y) = (yn(n+1) - ri)gn(sm)+((«+!) - yn(n + l))g„+i(sm)
when l/(n+l)^y^ 1/n. Consequently h0(x,y) approaches ^(sm) along the line (9); so

Ai(x, y) approaches along the given line.
We have shown that, for each x e A, there exists a line segment at x, lying in s(x,

such that A1(z)^-<^(x) as z->x along the line segment. We do not know that hY is
bounded, but this is easily patched up. Choose a real number B such that, for all x e
A,
—B < Re^(x) < B, —B < Im<£(x) < B, and set
h(z) = ([(ReA1(z)) v (-B)] A B)+i([(Imft1(z)) v (-B)] A B).
If we extend h to a bounded continuous function defined in H, and then restrict h

to Q, we have the desired function.
(C) Let d{t) be a weakly increasing, positive, real-valued function defined for 0< t

1. Then there exists a continuous, complex-valued function k defined in Q, with |&(z)|
^21/2 for all z e Q, such that for each a e (0, 1] and for each arc
y £ { <x, y>: — 1 x 1, 0 < y g a},
{diameter y) 2: d(a) implies {diameter k{y)) 2.
Proof. Let p{x)=%d{t) dt (0<x^l). Then p is positive, continuous, and strictly

increasing, and p{x)^\d{x). Let ae(0, 1] be given. Since p{xYr is uniformly continuous
on each compact subset of (0,1], there exists ee(0,1] such that
(|a Xi 1 and |xx-x2| < e)
implies
IX*1)~1~P(*2)~1| 1-
Let e{a) be the supremum of all such e. Then e{a) is an increasing function of a,

and
Qu xx S 1 and |xx-x2| < e(a))
implies
Set ?(x)=fo e(t) dt. Then q is positive, continuous, and strictly increasing, and tf(x)

= «(*)• Let m{x)=min {p(x), q{x)}. For <x, y>e Q, define
kfy) = sin {2n/ym{y)), k2{x, y) = sin {4nxlp{y)),
k{x,y) = i(y) + i2(x,y).
Now suppose that a e (0, 1] is given, and suppose that y£{ <x,y>: -l^x^l, 0<y^a}

is an arc with (diameter y)^d(a). Choose z1 = <x1, yx> and z2=<x2, y2> in y so that
lzx—z2| S d{a). Assume without loss of generality that y2^yi. We can choose a’ so that
0<|a’^y1^a’^a. Since m{a’)^ d{a’)^$ d{a), and since \z1—z2\^d{a), we must have
either
(12) | yi-y2| m{a’)
or
(13) bi-Jal < m{a’) and |x!-x2| | d{a’).
First assume that (12) holds. Here m{y2)^m{y1)^.m{a’), so
2?r/y1m(y1) 2jrly2m{y2),
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and we have 2tt 2tt 27r(jxffl(^i)-y2m(y2)) yzm(y2) ypntyj > 2n(y1m(y2)-y2m(y2)) =
2n(y1-y2) ~ yiy2m(y1)m(y2) yxy2w(yx) > 27r^(fl/) > 2tt >

= </sup> J1J2 <sup>

Thus, as <x, y) moves along y from <xx, y^ to <x2> J2X we see that 2irlym(y)
varies over an interval of length at least 2tt, and hence kY{y) varies over the whole of
the interval [—1,1]. Therefore (diameter k(y))^2.
Now assume that (13) holds. Then
4ttX! 4ttX2 p(yi)~ p(y 2)
4t7
Xx *2 p(yi) p(yi)
x2 x2
P&2) p{yi)

rixi-x2i__________________________________ 1_____ 1 1
L /»Oi) p(yz) p(yi) J
[i<)_ 11 1
Lx«) Xh) p(yi) J
S 477 11 -
1 1
p(y2) p(yi)
Now, [y1-y2l<m(a’)^q(a’)^e(a’), so [p(y2)~1-p(yi)~1[^j- Therefore |47rx1/p(y1)-

4irx2/p(y2)| 2tt, and we see that as <x, y>varies along y from <xx, yx> to <x2> y2>,
the quantity 4irx/p(y) varies over an interval of length at least 2tt, so that k2(x, y)
takes on every value in the interval [—1, 1], Thus (diameter k(y))^2.
(D) Let A^X be a set of type Fa{, and let</> be a bounded function of honorary

Baire class 2(A, R2). Then there exists a bounded continuous complex-valued function
f defined in Q such that A is the set of curvilinear convergence of f and</> is a
boundary function for f.
Proof. Let g be the function of (A) and let h be the function of (B). For t e (0, 1],

let
dt(t) = sup {8 e (0,1] : t,y2Z t, <x15 yx> e Q, <x2, y2> e Q, and
|<xi,yi>-<x2,y2>|< 8) implies |A(x1,y1)-/i(x2,y2)| t},
d2(t) = sup {8 e (0,1] : (jx t, y2 t, <Xx, jx>e Q, <x2, y2> e Q, and
|<Xx, yx>-<x2, y2>| < 8) implies |g(x1; y1)-g(x2, y2)| S t}, d(t) = min <4(10,10-
Let k be the function of (C) for this d(t), and set f(z)=h(z)+g(z)k(z) (z e Q). We

show that f is the desired function.
Suppose x e A. Then there exists an arc y at x, lying in s(x, 1, such that h ap-

proaches</> (x) along y. But g(z) approaches 0 through s(x, 1, $77) and k is bounded,
so g(z)k(z) approaches 0 along y. Hence f(z) approaches</> (x) along y. Thus is a
boundary function for /, and A is a subset of the set of curvilinear convergence off.
It only remains to show that if x is a point of the set of curvilinear convergence of/,
then x e A. To show this, let y be an arc at x along which f approaches a limit. We
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may assume without loss of generality that y has an end point in { <x, 1 >: — 1 ^x^
1}. By the properties of g, it will be enough to show that g approaches zero along y.
Assume that g does not approach zero along y. Then there exists e e (0, 1] and there
exists a sequence {zn} such that zney — {x}, zn-+x as «->oo, and |g(zn)| e for all n.
Write zn = (xn, yn). Choose N so that n^N implies yn<
For the time being, let n be a fixed integer greater than or equal to N. Set a =

4yn/3. Let y be the component of y n Cl [S(J(tz), zn)] that contains zn. (Recall that
S(d(a), zn)={z : \z-zn\ <d(a)}.) Then
d(a) diameter / 2 d(a),
and, since d(a) la,
7 £ {<x, y) : la g y £ a}.
By the choice of k, there exist points p and q in y with | £(/»)—&(<7)| S2. We

have lp-q{ £2 d(a)< dfila), so, by the definition of J/t),
|A(p)-A(?)| la < |e.
Similarly,
\g(p)-g(Zn)\ la < |e,
|g(?)-S(O| la <
Thus
I/(P)-/(9)| \g(p)k(p)~g(.q)k(q)\-\h(p)-h(q)\
I g(p)k(p)-g(zn)k(p) +g(zn)k(p) —g(zn)k(q) +g(Zn)k(q)-g(q)k(q)\ |g(z„)|
k(p)-fc(?)|-k(/OI \g(P)-g(Zn)\ -|£(?)l \g(<l)-g(Zn)\-le

Z 2e-2ll2le-2ll2le-le > e.
Note that \p-zn\^d(a)^la=lyn, and similarly |^-zn|^|yn.
We have now shown that, for each n^N, there exist points pn, qney with Ia>~z„|

ilyn, kn-Znl Hyn, and |/(pn)>«� But then pn->x and qn->x as n -> oo, so f does not
approach a limit along y. This is a contradiction. We conclude that g(z) -> 0 along y,
and hence that x e A.
(E)Let A^C be a set of type Fad, and let <f>be a bounded function of honorary

Baire class ^2(A, B2). Then there exists a bounded continuous complex-valued function
f defined in D such that A is the set of curvilinear convergence of f and</> is a boundary
function for f
Proof. If A = 0, this is trivial. If A / 0, then we can assume, by making a suitable

rotation of the disk, that <1, 0>g A. Let G = D-S(&, <|, 0» and let L = C —
{<1,0>}. Because Q u X is homeomorphic with G u £, we see from (D) that there
exists a bounded continuous complex-valued function fY defined in G such that
(i) A n L is the set of all points x e L such that/i approaches a limit along some arc

at x, and
(ii) the restriction of</> to L is a boundary function for fr.
Since G is closed relative to Z>, we can extend f± to a bounded continuous function

f defined in D in such a way that /has <£«1, 0» as a radial limit at <1, 0>. This f
will have all the desired properties.
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(F) Let S2 denote the Riemann sphere, let A^C be a set of type Fo6, and let</> be
a function of honorary Baire class ^2(A, S2). Then there exists a continuous function
f: D-+ S2 such that A is the set of curvilinear convergence of f and</> is a boundary
function for f
(1)We suppose that
S’2 = {<x, y, z) g K3 : x2+y2 + z2 = 1}. We let
U = {<x, y, z)eS2 : < 2 1

V = |<x, y, z) e S2 : -1 z <
Zu = y, z> e s2 : < z £ 1|,
Zv = | <x, y, z~>e S2 : -1 z < -jkj”
We define mappings 0^: Zv -> U and <J>y: Zv -> V by setting
<Mx, y, z) = <x(4z2 -1), y(4z2 - 1), z(4z2 - 3)> «x, y, z) g Zu)
and
<Dy(x, y, z) = <x(4z2 -1), y(4z2 — 1), z(4z2 - 3)> «x, y, z) g Zy).
Then 0^ is a one-to-one continuous function from Zu onto U. Since Za and U are

each homeomorphic to the unit disk D, it follows from [7, Corollary 1, p. 122] that
<>[/ is a homeomorphism of Zv onto U. Similarly, Oy is a homeomorphism of Zy onto
V,
We define a continuous function O: S2 -> S2 by setting
O(x, y, z) = <Du(x, y, z), < z 1,
0>(x, y, z) = <x, y, -z}, z
<D(x, y, z) = <Dv(x, y, z), -1 z <
Notice that for each p e S2, the inverse image set <h~1({p}) contains at most three

points.
(II) Most of the results of Hausdorff9 on real-valued Baire functions can easily be

shown to hold also for functions taking values in A”. We shall make free use of these
results in this more general form.
(III)Now we proceed to the proof of (F). Let N be a countable subset of A such

that the restriction of 0 to A—N is of Baire class \(A — N, S2), and let A=^ —N.
It will be convenient to let Fa(Ai) denote the class of all subsets of At that are of
type F„ relative to Alt and Gt{A^) the class of all subsets of Ax that are of type G6
relative to A. Since U and V are open subsets of S2 and U u V=S2, we see that A± n
j-^U) e F^A^, A,-/-1^) e G^AJ, and A1-/~1(F)^A1 n 0-1(G). An elegant theorem of
Sierpinski [8] now enables us to choose a set X e F„(A1) n Gd(A) such that
A-0-1(F) S K £ Ai n ^(U).
Let L = Ai-K. Then L e F^AJ n Gf(Ai). Moreover, </>(K)q U and 0(L)£ V.

Let/>! = <!, 0,0>, and define 0: A ->S2 — (pj as follows. Set
^(x) = <D^(0(x)), ^(x) =
xeK, xeL.

9 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,
J., 8 (1961) 201-207.
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If xeN, we let 0(x) be any element of ZVKJZV for which d>(0(x))=0(x). This choice
of 0(x) is always possible, because d>(Zy u Zy)2 U’J V=S2. Let </>o be the restriction
of 0 to A^KkjL. I assert that 0O is of Baire class
1(A» 52-{p1}). Since S2 - {pi} is homeomorphic to R2, it will suffice to show that

0O~ \G) e F^Ai) for every open set G£S’2-{p1}. But
0o \G) = A n i/r\G) = [Kn^G)]u[Ln ^>~\G)]
= [Kn fWulZu n G))] u [L n <f>-\^Zv c\ G))] e F^),
so 0o is of Baire class 1(A, S2—{pj). Now,A±A —N</em> is of type <em>G<sub>6</sub></em>

relative to <em>A,</em> so (again using the fact that <em>S<sup>2</sup>—
</em>{pj is homeomorphic to <em>R<sup>2</sup>)</em> we can extend 0o to
a function 0<sub>L</sub> of Baire class <em>^UA, S<sup>2</sup>—</em>{pj).
The existence of 0! shows that 0 is of honorary Baire class <em>£2(A,
S<sup>2</sup>—</em>{pj). The range of 0 is contained in <em>Z<sub>v</sub>
KJ Z<sub>v</sub>,</em> so that the values of 0 are bounded away from
p<sub>x</sub>. Thus, if we still think of <em>S<sup>2</sup> -</em> {pi}
as corresponding to the plane <em>R<sup>2</sup>,</em>0 corresponds to a
bounded function. By (E), there exists a continuous function <em>f<sub>1</sub>:
D</em> 5<sup>2</sup>-{pj} such that the values of are bounded away
from p<sub>n</sub> <em>A</em> is the set of curvilinear convergence of
/<sub>1(</sub> and 0 is a boundary function for <em>f<sub>r</sub>.</em>
Let <em>f</em> denote the composite function o Then <em>f</em> is continuous
and <!>° 0=0 is a boundary function for <em>f.</em> It only remains
to show that if x is a point of the set of curvilinear convergence
of <em>f,</em> then x e <em>A.</em> Let y be an arc at x along which
<em>f</em> approaches a limit, and let <em>C(f<sub>lt</sub></em> y)
denote the cluster set of/i along y. Assume that x 0 <em>A.</em> Then
does not approach a limit along y, so C(/i, y) contains infinitely many
points. Now, O maps at most three points to any one given point, so
O(C(/<sub>X</sub>, y)) contains infinitely many points. But O(C(/i, y))
is the cluster set of/ <I>° along y, and hence f does not approach a limit along
y, contrary to our assumption. We conclude that x e A after all. This completes the
proof of the theorem.
The following questions remain open.
Problem 1. If A is an arbitrary set of type Fa6 in C, does there necessarily exist a

continuous real-valued function in D having A as its set of curvilinear convergence!
Problem 2. If A^C is a set of type Fo6, and if</> is a function of honorary Baire

class ^2(A, R), does there necessarily exist a continuous real-valued function in D
having A as its set of curvilinear convergence and</> as a boundary function ?
Appendix. Some theorems concerning functions of Baire class 1 which take values

on the Riemann sphere can be obtained by the technique used to prove (F). We use
the notation set up in the proof of (F).
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Theorem (a). Let M be a metric space, and let</> : M -> S2 be a function such
that ^(G) is an Fa set for every open set G^S2. Then (f> is of Baire class l(Af, S2).
Proof. Since U and V are open and U u F=S2, it follows that the set
is Fa, the set M—is G6, and By the theorem of
Sierpinski [8], there exists a set K that is simultaneously Fa and Gd such that
Let L = M—K. Then L is simultaneously Fa and G6, and
W U, c: V.
Define 0: M S2—{pj (where ^ = <1,0, 0» by setting
^(x) = 0 - i(^(x)), x g K, 0(x) = <Dy- ^(x)), x g L.
If G is an open subset of S2 — {/h}, then
= [KhWUZij G))l u [£ n n G))],
so 0-1(G) is an Fff set. Since S2—{p1} is homeomorphic to the plane, it follows that

there exists a sequence {ipn} of continuous functions, each mapping M into S2—{p1},
such that pointwise on M. But then O(0n(x))0(^(x))=^(x) for each fixed x g M, so</>
is of Baire class 1(M, S2).
A special case of Theorem (b) was proved (in effect) in [6, proof of Theorem 6] by

means of a rather messy lemma (Lemma 3). Theorem (a) provides a proof that is both
more general and more esthetically satisfactory.
Theorem (b). Let M be a metric space, and let <£: M ->S2 be a function. Then

<f>is of honorary Baire class ^2(M, S2) if, and only if, there exists a countable set
N^M such that, for every closed set F^ S2,</> ~X(F) — N is a G6 set.
Proof. The implication in one direction is trivial. Now assume that N is countable

and that— N is a Gd set for every closed set F^S2. Let</> 0 be the restriction of</>
to M—N. Since S2 is a subset of R3, <£0 is of Baire class ^1(M—N, R3). Because
M—N is a G6 set,</> 0 can be extended to a function of Baire class
1(M, A3). Now, <^(x) e S2 except for only countably many x, so there ex-

ists some point q in the open ball enclosed by S2 such that q is not in the
range of fa. Define a mapping P: R3-{q}-+ S2 as follows. If a g R3-{q}, let
L be the ray with end point at q which passes through a, and let P(a) be
the intersection point of L with S2, Then P is continuous and P(a) = a for
each aeS2. Let ^Po<^<sub>1</sub>. If <em>G^S<sup>2</sup></em> is open,
then 0<sup>-1</sup>(G) = ^r<sup>1</sup>(P<sup>-1</sup>(G)), so that
0<sup>-1</sup>((7) is an <em>F<sub>a</sub></em> set. Thus, by Theorem
(a), <em>i/j</em> is of Baire class 1(M, <em>S<sup>2</sup>).</em> Moreover,
if <em>x $ N,</em> then ^<sub>1</sub>(x)^0W=<£(x)g S2, so that 0(x)P(^(x))^(x).
Therefore</> is of honorary Baire class ^2(M, S2).
An alternative proof of Theorem (b) could be given by combining Theorem (a) with

the following result.
Theorem (c). Let M be a metric space, E a G6 set in M, <f>a function of Baire

class 1(£, S2). Then</> can be extended to a function of Baire class l(Af, S2).
To prove this, use the technique appearing in the proof of Theorem (a).
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Finally, we note that a theorem proved by Bagemihl and McMillan for realvalued
functions [1, Theorem 2] can be transferred to the Riemann sphere by means of our
technique.
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9. July 1969 - Boundary functions
and sets of curvilinear convergence
for continuous functions
Original PDF: 9. July 1969 - Boundary functions and sets of curvilinear conver-

gence for continuous functions.pdf
Kaczynski, T.J. 1969. Boundary functions and sets of curvilinear convergence for

continuous functions. Trans. Am. Math. Soc. 141:107-125.
MR0243078 Kaczynski, T. J. Boundary functions and sets of curvilinear convergence

for continuous functions. Trans. Amer. Math. Soc. 141 1969 107.125. (Reviewer: J. E.
McMillan) 30.62

Explanation by John D. Bullough
The author completes the investigation, initiated by Bagemihl and Piranian, of

boundary functions of continuous complex-valued functions defined in the open unit
disk D. the set of curvilinear convergence A of such a function f is defined to be the set
of those eiT at which f has a finite or infinite limit along some open Jordan arc lying in
the disk and having one endpoint at eiT. A boundary function of f is a function t defined
on A such that each t(eiT) is one of these limit values. The author proved that t differs
from some function of the first Baire class at at most countably many points, and
McMillan proved that A is of type F(sd). By means of an intricate construction, the
author proves that for any set A on the unit circle of type F(sd), and for any function
t defined on A that differs from some function of the first Baire class at at most
countably many points, there exists a continuous complex-valued function f defined in
D having A as its set of curvilinear convergence and having t as its boundary function.
The author points out the the problem remains open for real-valued functions.
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10. Nov 1969 - The Set of
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Kaczynski, T.J. 1969. The set of curvilinear convergence of a continuous function

defined in the interior of a cube. Proc. Am. Math. Soc. 23:323-327.
MR0248339 Kaczynski, T. J. The set of curvilinear convergence of a continuous

function defined in the interior of a cube. Proc. Amer. Math. Soc. 23 1969 323.327.
(Reviewer: J. E. McMillan) 30.62

Explanation by John D. Bullough
The set of points of the unit circle at which a continuous complex-valued function

in the open unit disk has limits along curves (asymptotic values) is of type F(sd) and,
in general, has no other properties. The author shows that for continuous complex-
valued functions defined in a cube, this set of ”curvilinear convergence” does not even
need to be a Borel set. He asks whether such an example can be given for real-valued
functions.

Article by Ted
THE SET OF CURVILINEAR CONVERGENCE OF A CONTINUOUS

FUNCTION DEFINED IN THE INTERIOR OF A CUBE
T. J. KACZYNSKI
Let Q be an open connected set in a finite-dimensional Euclidean space, and let f

be a function mapping Q into another finite-dimensional Euclidean space. We define
the set of curvilinear convergence of f to be
{pE:boundary of Q: there exists a simple arc 7 with one endpoint at p such that 7

— {p} CQ and/(fl) converges to a finite limit as v—+p along 7}.
J. E. McMillan1 has shown that if Q is an open disk in the plane and if f is continuous

in Q, then the set of curvilinear convergence of f is of type Fo$. In this paper we
prove that there exists a bounded continuous complex-valued function /, defined in

1 M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press,
1961.
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the interior of a three-dimensional cube, such that the set of curvilinear convergence of
f is not a Borel set. Thus McMillan’s theorem does not generalize to three dimensions.
However, the following question remains open.
Problem. Does there exist a continuous real-valued function f, defined in the interior

of a three-dimensional cube, such that the set of curvilinear convergence off is not a
Borel set?
Let
R be the set of real numbers
Rn — w-dimensional Euclidean space
Q= l(x,y)Gi?2:0<ySland
�K={(x,y, z)Gi?3:0<y^l, -l^x^l.and -l^z^l}
<2° = interior of Q
K° = interior of K.
Let Q again represent an open connected subset of Rn. If/: Q—>Rm is a function,

we shall say that a£Rm is an asymptotic value of / iff there exists a continuous function
v: [0,1)—such that dist(fl(/), Rn — Q)—>0 and/(fl(£))—>& as t—>1. (Note that a
limit approached by / along a path which tends to 00 may or may not be an asymptotic
value by our definition.) We say that a is a point asymptotic value of / (at p) iff v can
be chosen so that, as t—*1, v(t) approaches
Received by the editors April 3, 1969.
323
a point —Q. Because of the result of [8], the set of curvilinear convergence of f is
{pE:Rn — has a point asymptotic value at p}.
Lemma. There exists a continuous complex-valued function s defined in
{(x,y) G R2: y> 0},
with | six, y) | 1 for all x and y, such that s has the following property.
Let E be the set of all asymptotic values of s that are real and lie in the interval (—

1, 1). Then E is equal to the set of all point asymptotic values of s that are real and
lie in (— 1, 1), and E is not a Borel set.
Proof. Let A be an analytic subset of R that is not a Borel set. (This exists [7, p.

254].) We see from the paper of Kierst2 that there exists a holomorphic function h
defined in {z: z is a complex number and | z\ < 11 such that h omits the three values
—i, i, oo and A\J { — i, i] is the set of all (finite) asymptotic values of h. The function
h is then normal [5, p. 53], so, as pointed out by McMillan [6, p. 311], it follows from
Theorem 1 of3 that A\J {—i, i\ is just the set of all (finite) point asymptotic values
of h. We now obtain the desired function by setting
s(x, y)
Z?((l — y)eix)
2 P. T. Church, Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J.,

4 (1957) 155-156.
3 F. Bagemihl & G. Piranian, Boundary functions for functions defined in a disk, Michigan Math,

J., 8 (1961) 201-207.
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(0<y^ 1),
1 + | h(fl - y)eix) |
/z(0)
(y 1).
$(x, y) = —————————- i——- r
1+| h(O) |
Remark. Since the theorem we want to prove has nothing to do with meromorphic

functions, it is unfortunate that the proof of the lemma depends on the theory of
meromorphic functions. This can be avoided. The lemma can be proved by using [7,
Theorem 113, p. 216], [1, Theorem 2, p. 179], and the methods of4, but this involves a
messy construction, so we omit the details.
Theorem. There exists a bounded continuous complex-valued function f defined in

K° such that the set of curvilinear convergence off is not a Borel set.
Proof. Let 5 and E be as described in the lemma, and set g(x, y) = s(x/y, y) for (x,

y)GQ- The reader can verify that E equals the set of all real point asymptotic values
of g at the point (0, 0) which lie in the interval ( — 1, 1). For each /G(0, 1], define
tZo(O = sup{a G (0, 1]: ((x, y) G Q, (%’, yf) G Q, y t, y’ t, and | (x, y) — (x’, y’)

| < 5) implies | g(x, y) — g(x’, y’) | t}, d(t) = min{|do(JO, 1^-
By statement (C) of5, there exists a continuous complex-valued function k defined

in Q, with |fe(x, y) | ^21/2 for all (x, y)GQ, such that for each oG(0, 1] and for each
arc
7 C {(x, y): — 1 x 1 and 0 < y g a}, (diameter 7) ^d(a) implies (diameter £(7))

^2.
Let f be the function with domain K° defined by /(x, y, 2) = (g(x, y) —2)&(x, y).

We note that the following inequality holds for any three points (x, y, 2), (x’, y’, 2’),
(x”, y”, 2”) in K°:
I/O’, y’, z’) -f(x”,y”,z”)\
= | (g« y’) - z’)k(x’, v’) - (g(x, y) - z)k(x’, y’) + (g(x, y) ~ ^k(x’, y’) - (g(x, y) -

z)k(x”, y”) + (g(x,y) - z)k(x”,y”) - (,g(x”,y”) - z”)k(x”,y”) | I g(x, y) - z I I k(x’, y’) -
k(x”, y”) I
(1) - | k(x’, y) | |g« y’) - z’ - g(x, y) + z I
- | k(x”, y”) 11 g(x, y) — z — g(x”, y”) + z” |
I g(x, y) - z 11 k(*’, y’} - k(x”, y”) I
- 2 I g(x’,y ’) - g(x, y) I - 2 I g(x, y) - g(x”, y”) |
- 2 | z — z’ | — 2 | z” — z | .
LetZ= {(0, 0, 2): — 1 <2 < 1}, and let T be the set of curvilinear
convergence of f. We wish to show that rP\L= {(0, 0, 2):2G^}.

4 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
(1931) 283-295.

5 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
(1931) 283-295.
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Suppose &G£- Then there is an arc 7 with one endpoint at (0, 0) such that 7— {(0,
0)} CQ° and g approaches b along 7. Let
7’ = {(*, y, b): (x, y) G 7}.
Then g(x, y)—2—>0 as (x, y, 2)—*(0, 0, b) along 7’. Thus, since k is bounded,/(x,

y, 2)—>0 along 7’, so (0, 0, &)GLHL.
Now let us assume, conversely, that (0, 0, &)GrO£ and deduce that &G£- Let 7’ be

an arc with one endpoint at (0, 0, b) such that 7’— {(0, 0, b)} QK° and / approaches
a limit along 7’. Let
7 = {(x, y) G R2’ (x, y, 2) G 7’ for some 2}.
Then 7 is a (not necessarily simple) arc with one endpoint at (0, 0) and 7— {(0, 0)}

CQ°. I assert that g(x, y) —2 approaches 0 along 7’.
Assume this is false. Then there exists c > 0 and there exists a sequence of points

{(xn, yn, zn)} *=1 in 7’ — {(0, 0, b)} such that
(xn, yn, Zn) (0, 0, b) as n 00
and | g(xn, yn) —zn\ for all n. Let 8>0 be chosen so that whenever (w, v, w)£y’,

(x, y, z)Ey’, and v, y^b, then |w—z\ <|e. Let N be chosen so that n N implies yn <
min {3e/32, 33/4, 3/4}.
For the present, let n be a fixed integer greater than N. Set a = ^yn/3. There exists

an arc 7* contained in
7 C\ {(x, y) G R2*. | (x, y) — (x„ , yn) | d(a)\
joining (xn, yn) to a point on the circle of radius d(a) about (xn, yn). Clearly (diam-

eter 7*) (a), so (diameter k(y*))^2. Choose points
(x» , yn), (xX, y”) in y* with \k(xj, yn)-k(x’n’, y”)| ^2. Choose Zn , z’n so that (xn’,

yn’, Zn) and (x„ , y„’, z„) are in 7’. It is easy to check that Ja^y/ <8 and |a^y”<8, so
(2) | zn — Zn | < je and | zn” — zn | < |e.
Moreover, since | (xn’, yn’) — (xn, yn)| ^d(a) g %d^a), we have

g(Xn, <em>yn) - g(%n ,
yn)

</em> < e;

and similarly

g(.r„”, yn’) - g(xn, yn) I < e.

Combining these inequalities with (1) and (2), we get
| f (xn J yn y Zn ) f (xn , yn , zn ) | >
| g(%n, yn) Zn | | ^(xn , yn ) k(xn , yn ) | £ = 2fi € — €.
But yn’, yn ^yn/3, so (xn’, yn’, z„)—»(0, 0, b) and (x”, yn”, 2/’) —>(0, 0, b) as n—

»oo ; hence f cannot approach a limit along 7’, which is a contradiction. We conclude
that g(x, y)— z—>0 as (x, y, z) -^(0, 0, b) along 7’.
It follows immediately that g(x, y)-^b along 7, so b^E. We have now shown that
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rnz = {(o,0,z):zE £}.
Thus TC\L is not a Borel set. Hence T is not a Borel set; for if it were, then TPiL

would also be a Borel set.
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Ted’s Work from his Parents Home
in Illinois



11. Problem 786
January, 1971
https://doi.org/10.2307%2F2688865
By T. J. Kaczynski, Lombard, Illinois.
Suppose we have a supply of matches of unit length. Let there be given a square

sheet of cardboard, n units on a side. Let the sheet be divided by lines into n2 little
squares. The problem is to place matches on the cardboard in such a way that: a) each
match covers a side of one of the little squares, and b) each of the little squares has
exactly two of its sides covered by matches. (Matches are not allowed to be placed on
the edge of the cardboard.) For what values of n does the problem have a solution?
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12. A Match Stick Problem
November–December 1971
https://doi.org/10.2307%2F2688646

• Cropped Source

• Full Chapter Source

Problem 786. [January, 1971] Proposed by T. J.
Kaczynski, Lombard, Illinois.
Suppose we have a supply of matches of unit length. Let there be given a square

sheet of cardboard, n units on a side. Let the sheet be divided by lines into n2 little
squares. The problem is to place matches on the cardboard in such a way that: a) each
match covers a side of one of the little squares, and b) each of the little squares has
exactly two of its sides covered by matches. (Matches are not allowed to be placed on
the edge of the cardboard.) For what values of n does the problem have a solution?

I. Solution by Richard A. Gibbs, Hiram Scott
College, Nebraska.
A necessary and sufficient condition that a solution exist is that n be even.
Sufficiency is easy. If n = 2k, consider the cardboard as consisting of k2 2X2 squares.

Simply place a match on each of the four segments adjacent to the center point of each
2X2 square.
For necessity, assume a solution exists for an nXn sheet of cardboard. To each unit

square correspond the point at its center. Connect two points if their corresponding
squares share a match. By the hypotheses, every point will be joined to exactly two
others. Therefore, according to a basic result of Graph Theory, the resulting graph will
be a collection of disjoint cycles. Each cycle will enclose a polygonal region whose sides
are either horizontal or vertical line segments. Consequently, since the length of each
segment is an integer, the area of each polygonal region will be an integer. By Pick’s
theorem (a beautiful result familiar to anyone who has played with a geo-board) the
area of the 2th polygonal region is
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A = %Pi + li - 1
where there are Pi points on the perimeter and li points in the interior of the 2th

polygonal region. Since each area is an integer, each Pi is even. As each point is on
exactly one perimeter, the sum of the Pi is the total number of points, n2. Hence n is
even.

II. Solution by Richard L. Breisch, Pennsylvania
State University.
A generalization of the stated problem will be demonstrated. Let the cardboard be

an m X n rectangle. The problem of covering the cardboard in the stated manner has
a solution if and only if m and 72^2, and m and n are not both odd.
An alternative representation of the problem will be used to demonstrate this. Con-

sider the mXn array of the center points of the little squares. If two edge-adjacent
squares have a match on their mutual edge, connect the centers of these squares with
a line segment. Since each little square has exactly two of its sides covered by matches,
in the alternative representation, there are exactly two line segments from each point
in the array. Hence each connected set of line segments forms a polygon, and the mXn
array is covered by a collection of polygons. Each polygon must have an even number
of horizontal segments and an even number of vertical segments. Since there are m -n
segments, m and n cannot both be odd integers.
Suppose m is even. Then the mXn array can be covered with m/2 rectangular

polygons each of which has dimensions 1 segment by n segments. The arrangement of
matches in the original representation is easily derived from this representation.
Also solved by Dan Bean, Dave Harris and E. F. Schmeichel (Jointly), College

of Wooster, Ohio; Thomas A. Brown, Santa Monica, California; Melvin H. Davis,
New York University; Roger Engle and Necdet Ucoluk (jointly), Clarion State College
Pennsylvania; Michael Goldberg, Washington, D.C.; M. G. Greening, University of New
South Wales, Australia; Heiko Harborth, Braunschweig, Germany; Herbert R. Leifer,
Pittsburgh, Pennsylvania; Joseph V. Michalowicz, Catholic University of America;
George A. Novacky, Jr., University of Pittsburgh; J. W. Pfaendtner, University of
Michigan; Sally Ringland, Shippenville, Pennsylvania; Rina Rubenfeld, New York City
Community College; E. P. Starke, Plainfield, New Jersey; and the proposer.
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Ted’s Work as a Montana Hermit



Never published new ground?
Ted went back to playing around with pure math equations briefly in his cabin in

Montana. He even wrote the kind of math paper you would submit to a journal, but
never sent it anywhere.
Here’s how Ted explained the paper in relation to his other work:(2)

(Ca) FL #80, letter from me to my parents, Spring, 1964, p. 1: “It’s a
good thing I didn’t follow Piranian’s suggestions about how to attack the
problem, or I never would have solved it!”
Piranian urged me to prove (a) that every continuous function in the disk
admits a family of disjoint arcs, and to deduce from this (b) that every
boundary function for a continuous function can be made into a function
of the first Baire class by changing its values on at most a countable set.
(The terminology is explained in F. Bagemihl and G. Piranian, “Boundary
Functions for Functions Defined in a Disk,”Michigan Mathematical Journal,
8 (1961), pp. 201–207.)
I maintained that it would be much easier to prove (b) by examining
inverse–image sets, and I even suggested that (b) might then be used to
prove (a). And that’s how it turned out. I did prove (b) within three months
or so by using inverse–image sets. The proof of (a) was vastly more difficult.
I didn’t succeed in proving (a) until two decades later, and I had to use (b)
in order to do it. The proof of (a) has not been published.

And here’s a glimpse into Ted’s headspace when writing it, from a journal entry at
the time:(3)

Ever since seeing how the Trout Creek area has been ruined I feel so much
grief whenever I am sitting quietly, or when I am walking slowly through the
woods just looking and listening, that I have to keep occupied almost all the
time in order to escape this grief. That was my favorite spot. Whoever has
read my notes knows very well what the other causes have been. Where
can I go not to enjoy in peace nature and the wilderness life? — which
are the best things I have ever known. Even in the officially designated

(2) Truth versus Lies (Original Draft)
(3) Journal #1 of 4 from Series VII (1984-1986)
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“wilderness” there must be the continued noise of airplanes, especially the
jets, since I know that planes are permitted to fly over the Bob Marshal
and Scapegoat wildernesses. Are there fewer planes there than here. Maybe,
maybe. Perhaps one of these days I’ll go and find out. But so many times
I’ve gone looking for a place where I can escape completely from industrial
society, and always . . . [three dots in the original] well, I’m very discouraged.
So, I’ve been playing around with mathematics a good deal lately. It’s a
rather contemptible game, but while I’m involved in it, it enables me to
escape from my grief.
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13. Four-Digit Numbers that
Reverse Their Digits When
Multiplied
Original PDF: 11. Unknown Date - Four-Digit Numbers that Reverse Their Digits

When Multiplied.pdf
FOUR-DIGIT NUMBERS THAT REVERSE THEIR

DIGITS WHEN MULTIPLIED
T. J. KACZYNSKI
If n <i-2 is an integer and ag, . .. * a^ are integers satisfying 0 n for i « 0,1, • • •

,h ,
then we let … , ap ag)n denote the number
ajaJ • Whenever we write a symbol of the form (ah, … , a., ag)n * it is to be

understood that
0 a_£ n for i — Oy1f.««fh so that ah® • • • > al ag are the digits of the number

(ah, … , *p ag)n in base n notation.
If k is an integer and 1 k < n , we say that (a^, … , ap ao)n i® reversible for n, k

if and only if a^ / 0 and kCa^, … , ap a$)n a (ag, a^t … , ah)n • Reversible numbers
have been studied in1, [2j,2. The purpose of thia paper is to construct a rather involved
family of 4-digit reversible numbers that illustrates the complexity of the reversible
number problem. We use the abbreviation RN for ”reversible number”.
Sutcliffe [jj showed that there exists a 4-digit RN for any base n >3 • Let d be any

divisor of n
(possibly n itself) with d ”3 , and set t = n/d and k = d-1 . Then
k(t, t-1, n-t-1, n-t)n = (n-t, n-t-1, t-1, t)n .
(This family of in Let us
refer to a RN of this type as a Sutcliffe RN. Note that the Sutcliffe reversible number

(t, t-1, n-t-1, n-t)n is equal to (n+1)(t-1, n-1, n~t;n .
At least two other types of 4-digit RNs may exist for certain values of n. ,
If (a,b,c)Q is a J-digit RN for n, k , and if a+b £ n-1 and b+c < n-1 , then

(n*1)(a,b,c)n is a 4-digit RN for n, k • (For instance, 4X (2,5,9) =

1 F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat, Acad, Sci. U. S. A.> 4
(1955) 379-382.

2 S. Banach, Uber analytisch darstellbare Operationen in abstrakten Raumen, Fund, Math., 17
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(9,5»2)17 ; multiplying by 18 yields 4X(2,7,14,9)17 a (9,14,7,2)•)
If (a,b,c)n is any solution of the system of conditions
k(a,b,c)n = (c-1 ,b+1 ,a)Q ,
(1)
a+b £ n-2 , b+c >� n , a 0 ,
then (n+1)(a,b,c)Q is a 4-digit RN for n, k , as can
be verified by computation. We note that 4^/7 Jw /•
from a solution of (1) can never be a Sutcjlffe RN for n, k , because if t = n/(k+1)

then (t-1, n-1, n-t)Q cannot satisfy (1).
One family of solutions of (1) can be obtained by taking any integers u - 1 and k

3 and setting n = u(k2-1)+k , a = (k-1)u , b a (u(k+1) + 1)(k-2) , c = (uk+1)(k-1) .
Observe that the corresponding 4-digit RN is (n+1)(a,b,c)n = (k-1 ,k-3,k-1)n(u,uk+1)n
, and that (u,uk+1)n is a 2-df g-’RN for n, k .
Sutcliffe [J] showed that there exists a 2-digit RN in base n notation if and only if

n+1 is not prime. It was shown in [ 1 ] that there exists a 3-digit RN for n if and only
if n+1 is not prime. This directs our attention to 4-digit RNs in the case where n+1
is prime.
Does (1) ever have a solution when n+1 is prime? The answer is yes. With n+1 = 59

we have 19X(2,41,52)53 = (51,42,2)^ , which yields 19 *(2,44,35,52)^ = (52,35,44,2)53
.
Do there exist infinitely many such examples? The answer is again yes.- Let s be

any nonnegative integer, take k « 19 , n = 5&+360s , a = 2+17a , b = 41+260s , c =
52+323s , and we have a solution of (1). By Dirichlet’s Theorem, there are infinitely
many positive integers s for which n+1 « 59*360s is prime.
However, all these solutions are in a sense
isomorphic; w© do not regard them as essentially different. What we really want

to show is this:
There exist infinitely many positive integers k having the property that there exist

integers n, a, b, c for which n+1 is prime and the system of conditions (1) is satisfied.
This is our main result. To prove it, set
f(x) = 41067x2 - UOhx � 9 g(x) = 10179x2 - 222x � 1 .
The discriminant of g(x) is 8%8 » 2^-1071 , not a square, so g(x) has no linear

facWr with rational coefficients. Therefore f(x) and g(x) have no nonconstant common
factor with rational coefficients. Consequently there exist polynomials p(x) and q(x) ,
with rational coefficients, such that p(x)f(x) •> q(x)g(x) * 1 . Let d>0 be the product
of the denominators of all the fractions that appear as coefficients of p(x) and q(x) ,
and let pfx) » dp(x) and Q(x) = dq(x) • Then P(x) and Q(x) have integer coefficients
and P(x)f(x) � Q(x)g(x) = d .
Let k be any number of the form k « 1l7yd-2 , where y is a positive integer. Let D

= yd and let v be the greatest common divisor of f(D) and g(D) . Then v divides D a

(1931) 283-295.
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yP(D)f(D) � yQ(D)g(D) . Since v divides g(D) it follows that v divides 1 . Thus f(D)
and g(D) are relatively prime.
By Dirichlet*s Theorem, we can choose a positive integer t for which f(D)t * g(D)

is prime. Set
n = f(D)t � g(D) - 1 = (4iO67D2-UO4D*9)t*1O179D2-222D ,
u = 1JD , r = 2(u-1) , m = 117Dt-t*29D = (9u-l)t+29D ,
U = 3u-1 , R = 3r+1 a 6u-5 = 78D-5 , M = 9m*1 ,
w = 9rm*Jm*r .
We compute
k = 117D-2 a 9u-2 = 3U+1 , n a MU*1 , MR = 3w*1 .
Modulo 9u-1 we have the following congruences:
nR+w a (MU*1)(6u-5)*9rm*3m+r
« (27mu+3u-9m)(6u-5)�18mu-15m*2u-2
= (3»3u-9m)(6u-5)2ia-15m>2u-2
a 18u2-13u-36mu+17m-2 = -2u*13m-3
= -26l>377D-3 = 351D-3 « 3(117D-1) = 3(9u-1)
= 0 (mod 9u-1) .
Thus nR+w is divisible by 9u-1 • Choose an integer c so that (k+1)c = (9u-1)c a

nR+w . Set S = knR-(k2-1)c-1 . Because (n+1)R = (MU+2)R - 1 (raod 3) , we see
that k-1 = 3U divides MIl[(n+1 )R-l]. Thus
Sn-R+1 = (kn2-1)R-(k2-1)nc-(n-1)
E(n2-1)R-(n-1) = MU[(n+1)R-1 j 5 0 (mod k-1) .
Choose an integer b so that (k-1)b = Sn-R+1 . Sot a - kc-Rn . We then have
(2) kc = Rn+a
(3) kb+R = Sn+b+1
(4) ka+S = c-1
We must show that certain inequalities are satisfied. Clearly 2 k <i n , c >2 , 2 R

k-1 . Thus (k2-1)c = 3U(k+1)c = 3U(nR+w) < 3UnR+UMR < 3UnR+nR 3 knR <
kn(k-l) < (k2-1)n .So 2 < c < n .
Observe that R-1+U < 3U 2(R-1)*U . Adding 3U(k*1)c = 3V(nR+w) to thia

inequality gives
< J 3U(nR+w)4-R-1+U < 3U(k+1)c^^^3U(nR+w)+2(R-1)+U , (k-1)nR*R-

1+MRU <(k2-1)c+k-1 -4 (k-1)nR*2R-2+MRU , (k-1)nR>nR-1 < (k2-1)c*k-1
(k-1)nR+nR+R-2 ,
1 <(k2-1) c-knR+k+1 <R ,
k-R<.S < k-1
Thus 2 < S < k-1 (from which we see that b >0 ) and
(5) S+R > k+1 .
Also, (k-1)b = Sn-R+1 Sn (k-2)n^ ffe^so that b<T < �^’n = n-1 , and b+1 < n .
p
Note that (k+1) C n , so that (k+1)c = nR+w > 2 (k+1) and c-1 > k >S • Thus

ka = c-1-S > 0 , so that a 0 .
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From (J) and (4), we find k(a+b)+R+S = Sn+b+c <^ (S+2)nt~kn • Therefore
a+b < n . Suppose a+b = n-1 • Then from (4) and the definition of b we have (k-1)(n-
1) = (k-1)(a+b) = S(n-1)+c-a-R . Consequently n-1 divides c-a-R . But c >ka by (4),
so n-1 >c-a-R >(k-1)a-R>0 . This contradiction shows that a+b n-2 .
From (3) and (5) we see that (k-1)(b+c) s Sn-R+1+(k+1)c-2c = (S+R)n+w+1-R-

2c (k+1)n+w+1-R-2c >
(k-1)n+w+1-R . But 3R MR = 3w+1, so that R < w+1 . Therefore b+c >n •
Equations (2), (3)» (4), together with the inequalities we have just proved, show

that (a,b,c)n satisfies (1). ©
In the foregoing argument there is no need to restrict ourselves to the case where

n+1 is prime, so the construction also yields many 4-digit RNs for composite values
of n+1 .
We hooe to publish at a later date a more general treatment of reversible numbers,

in which we shall prove (among other tilings) that if n*1 is prime, then every 4-digit
RN for n is either a Sutcliffe RN, or of the form (n+DfajbjC) , where (a,b,c)n is a
solution of (1).
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14. Handwritten Math equations
and procedures
Original PDF: 12. Unknown date - Handwritten Math equations and proce-

dures.pdf
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