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FOUR-DIGIT HNUMBERS THAT REVERSE THEIR
DIGITS WHEN MULTIPLIED

T. J. KACZYNSKI

If"n =2 is an integer and ags Agp eee y Ay
éré iniegers satisfying O fEai‘<:n for 41 = 0,1,...,h ,

then we let gah, see p A4 ao)n denote the number

ZE:?=O at:jn‘1 o Whenever we write a symbol of the form
(aps eee a;5 85), , it is to be understood that
O<ay<n for 4 =0,1,...,h , so that 8ps ees 9 34y 8

are the digits of the number (aps ooe a,y a5), in
base n notation,

If k 1s an integer and 1 <k <n , we say that
(aps oee 2,5 85), 1is revorsible for n, k if and

only 1f a; #0 and k(ap, ..., a,, ay), =

(ay, 845 «ee 5 @), « Reversible numbers have been
studied in [1], {2], [ 3]. The purpose of this paper is
to construct a rather involved family of L-digit
reversible numbers that illustrates the complexity of
the reversible number problem., We use the abbreviation
RN for "revercible number",

Sutcliffe [ 3] showed that there exists a A4-digit
RN for any base n =3 . Let d be any divisor of n



1

(possibly n 4itself) with d "3, and set t = n/d

and kx = d-=1 . Then

]QII; was yvedicrovored

(This family of § in [2].) Let us

refer to a RN of this type as a Sutcliffe RN. Note that
the Sutcliffe reversible number (t, t-1, n-tei, n-t)n
is equal to (n+1)(t=1, n=-t, n~t) .

At least two other types of 4-digit RNs may exist
for certain values of n,

If (a,b,c)n is a 3=digit RN for n, k , and if
atb < n-1 and b+c < n-1 , then (n+1)(a,b,¢), 1is a

L4-digit RN for n, k . (For instance, 4X~(2n5-9),7 =
(9,5,2)17 ; multiplying by 18 yields h)<(2,7.14,9)17
=2 (9'14.7.2)‘7 0)

It (a,b,c), 1is any solution of the system of

conditions

k(a,b,c)n = (c-1.b*1.a)n ’
(1)

a*tb< ne2 , bsc>n, af£0,
then (nﬂ)(a,b,c)n is a 4-digit RN for n, k , as can
be verified by computation. We note tnaglf]v;;u
i £fe RN for

from a solution of (1) can never be a Sutc

a RbJ;JGf‘.



n, =, because 1f t = n/(k+1) then (t-1, n-1, n-t)
cannot satisfy (1).

One family of solutions of (1) can be obtained by
taking any integers u =1 and k > 3 and setting
n = u(k®1)+k , a = (kel)u, b= (u(k+1)+1)(k=2) ,
c = (uk+1)(k=1) . Observe that the correSpondiﬁg o
h-digit RN 1s (n+1)(a,b,c), = (k=1,k=3,k=1) (u,ukel), ,

and that (u,uk+!)n isa 2~4*>"* 3N fcr n, k .

Sutcliffe [ 3] showed that there exists a 2-digit
RN in base n notation if and only if n+1 1is not
prime. It was shown in [ 1] that there exists a 3-digit
RN for n if and only if n+1 4is not prime., This
directs our attention to 4-digit RNs in the case where
n+1 1is prime.

Does (1) ever have a solution when n+1 1s prime?
The answer is yes, With n+1 = 59 we have

19X(2,41,52) 5 = (51,42,2) 53 , which yields
19 X(Z.M|35952)58 = (52.35.’-}4.2)58 .

Do there exist infinitely many such examples? The
answer is again yes..Let 8 be any nonnegative integer,
taxe k=19, n=58+360s, a=2+178, Db = L1+260s ,
c = 52+323s , and we have a solution of (1). By
Dirichlet's Theorem, there are infinitely many positive
integers s for which n+1 = 59+3608 is prime.

However, all these solutions are in a sense
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isomorrhic; we do not regard them as essentially

different, What we really want to show is this:

There exist infinitely many positive integers k
having the property that there exist integers

n, a, b, ¢ for which n+! is prime and the system of

conditions (1) is satisfied.

This is our main result. To ~rove it, set

£(x) = 4,1067x2 - 1404% + 9

g(x) = 10179x% - 222x + 1 .

The discriminant of g(x) is 8568 = 2°-1071 ,
not a square, so g(x) has no linear fac¥x with
rational coefficients., Therefore f(x) and g(x) have
no nonconstant common factor with rational coefficients.
Consequently there exist polynomials p(x) and q(x) ,
with rational coefficients, such that
p(x)f(x) + q(x)g(x) = 1 . Let d >0 Dbe the product of
the denominators of all the fractions that appear as
coefficients of p(x) and q(x) , and let P’&) = dp(x)
and Q(x) = dq(x) . Then P(x) and Q(x) have integer
coefficients and P(x)f(x) + Q(x)g(x) = a .

Let k be any number of the form k = 117yd=2 ,
where y 1s a positive integer, Let D = yd and let



XX

v Doe the greatest common divisor of £(D) and g(D) .

Then

Vv divides D = yP(D)f(D) + yQ(D)g(D) . Since vV

divides g(D) it follows that v divides 1 . Thus

£(D)

and g(D) are relatively prime,

By Dirichlet's Theorem, we can choose a positive

integer t for which f(D)t + g(D) 4is prime, Set

=
i

£(D)t + g(D) = 1 = (41067D°=1404D+9) t+10179D%=222D ,

=13D, r=2(u=1) , m= 117Dt=t+29D = (Ju=~1)t+29D ,

U=3u=t y, R=3r¢1 = 6u=5 = 78D=5 , M = 9m+1} ,

E -]
]

nR+w

9rm+3m+r .

We compute

117D=2 = 9u=2 = 3U+1 , n = MO+1 , MR = 3w1] .

Modulo 9u~1 we have the following congruencess

(MU+1) (6u=5) +9rm+ 3m+r
= (27mu+3u~-9m) (6u~5)+18mu=15m+ 2u=2
(3m+3u=9m) ( 6u=5) + 2n1=15m+ 2u=-2
18u%-13u~36mu+ 170=2 = ~2u+13a-3
~26D+377D=3 = 351D=3 = 3(117D=1) = 3(9u=1)

= 0 (mod 9u=-1) .

W om

Thue nR+w 4is divisible by 9u-1 . Choose an integer ¢

5.



so that (k+1)c = (Qu=t)c = nRew . Set §

it

nR-(k%=1)c-1 . Because (n+1)R = (MU+2)R
we see that x-1 = 30 divides MUL(n+1)R-1]. Thus

Sn-R+1 = (xn2=1)R=(k2=1)nc=(n=1)

= (n2=1)R=(n=1) = MU[(a+1)R=11= O (mod k=1) .

Choose an integer b so that (k=1)b = Sn=R+1 . Sot

a = %¢c-Rn . We then have

(2) kC = Rn+a
(3) kb+R = Sn+b+1
(4) ka+S = c=1 .

We must show that certain inequalities are
satisfied. Clearly 2< k<n, ¢ 2, 2<RK k=~
Thus (k2=1)c = 3U(k+1)c = 3U(nR+w) < UnR+UMR <
3UnRenR = knR < kn(k-1) < (k®=1)n . So 2<c<n .

Observe that R=1+U < 3U < 2(R=1)+U . Adding
3U(k+1)c = 3U(nR+w) to this inequality gives

3T (nR+w)+R=1+0 < 30(1@1)ci’%%(}’d(nﬁw);a(l?dhtl "
(k=1)nR+R=14MRU < (k=1) c+k-1 &£ (k~1)nR+2R-2+MRU ,
(k=1)nRenR-1 < (k%=1)ce+k=1 & (k-1)nR+nR+R=2 ,

1 £ (x°=1)c-knRek+1 < R ,

k"R<~S < k”’ L]

1 (mod 3) ,

6.
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Thus 2 < 8§ < k-1 (from which we see that b > 0 ) and

(5) S+R = k+1t .

Sn~R+1 < Sn < (k-2)n ghso that b< £

<9-g—’-n=n-1,and b+1 < n .,

Note that (%+1)°« n , so that (k+#1)c = nRtw >

(’:H-l)2 and c-=1 >k >»S , Thus ka = c=1=-S >»0 , s0
that a>»0 .,

From (3) and (4), we find k(a*b)+R+3S = Sn+b+c L
(s+2)n < kn , Therefore a+b< n . Suppose a+b = n-1 .
Then from (4) and the definition of b we ha#e
(k=1)(n=1) = (k=1)(a+tb) = S(n-1)+c-a=R . Consequently
n-1 divides c-a=R . But ¢ >ka by (4), s0 n=1>
c=a=R > (k=1)a=R > 0 . This contradiction shows that
atb € n-2 ,

From (3) and (5) we see that (ke«1)(b+c) =
Sn-R+1+(z+1)c-2¢c = (S+R)n+w+1~R=2c = (k+1)n+w+1=-R-2¢c >
(k=1)n+w+1-R . But 3R < MR = 3w+1, so that R< wel .
Therefore b+¢c > n ,

Equations (2), (3), (4), together with the -
inequaiities we have just proved, show that (=3,b,c)
satisfies (1). &

In the foregoing arzument there is no need to

restrict ocurselves to the case where n+1 is prime, so



the construction also yields many Le-digit RNs for
conrosite values of n+t .

We howe to publish at a later date a more zeneral
trcatment of reversible numbers, in which we shall prove
(among other things) that 1f n+1 4s prime, then every
L-digit RN for n is either a Sutcliffe RN, or of the

forn (m-!)"'a.,b,c)_q , Wwhere (a,b,c)n is a solution of (1).
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