BOUNDARY FUNCTIONS FOR
BOUNDED HARMONIC FUNCTIONS

BY
T. J. KACZYNSKI

Let D be the open unit disk in the complex plane and let C be its boundary, the
unit circle. If { € C, then by an arc at { we mean a simple arc y with one endpoint at
{ such that y—{{}< D. In this paper we use the term boundc:y function in the
following sense. If fis a function defined in D and ¢ is a function defined on a set
S<C, then we say that ¢ is a boundary function for f if, and only if, for each { € S
there exists an arc y at { such that f(z) approaches ¢({) as z approaches { along y.
It is known that if ¢ is a boundary function for a continuous function, then ¢
can be made into a function of Baire class O or of Baire class 1 by changing its
values on at most a countable set of points [4, Theorems 2, 3], [6, Theorem 6],
[8, Theorem 3]. Hence ¢ is of Baire class at most 2. Conversely, if ¢ is a function
defined on C such that ¢ can be made into a function of Baire class 0 or 1 by chang-
ing its values on at most a countable set, then ¢ is a boundary function for some
continuous function [1, Theorem 8]. Bagemihl and Piranian gave an example
[1, Theorem 6] of a harmonic function having a boundary function defined on C
that is not of Baire class O or I, and they asked [1, Problem 5] whether there exists
a bounded harmonic function having a boundary function defined on C that is not
of Baire class 0 or 1. In the present paper we answer this question by constructing
the desired function. We then show that, despite this example, a boundary function
for a bounded harmonic function always resembles a function of Baire class 0 or
1 in this respect: its set of discontinuity points is of the first category.

We say that a function f defined in D has the asymptotic value a at a point { € C
if there exists an arc y at { such that f(z) approaches a as z approaches { along y.
We say that f has general limit a at { if f(z) approaches a as z approaches { with
no restrictions other than that z € D.

Let P,(6) denote the Poisson kernel; that is,

1—r2

P:(6) = 1+r2=2rcos 6

We list three facts that we will use about the Poisson integral. These facts are
presumably well known, and in any case can be easily derived from the discussion
on pp. 32-38 of [3].
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(i) If ¢ is a bounded measurable real-valued function on C, then the Poisson
integral of ¢, defined in D by

fire) = 5- [ denpo-na,

is a bounded harmonic function in D.
(ii) If ¢ is a measurable function defined almost everywhere on C, if

|7 et dr < e

and if ¢ is defined and continuous at a point {, € C, then the Poisson integral of
¢ has general limit ¢({,) at . ,
(iii) If fis harmonic in D, and if, for some p>1,

{ff,, | f(ret)|? dt : r e [0, l)}

is a bounded set of numbers, then the radial limit of f exists at almost every point
of C, and if ¢ is the function defined almost everywhere on C by this radial limit,
then [”  |¢(e")| dt <o and f'is the Poisson integral of ¢.

Before constructing our function, we prove a simple lemma.

LEMMA. Let {I,}7-, be a sequence of pairwise disjoint closed arcs of C, each arc
containing more than one point. Let {Q,}_, be a sequence of Jordan domains in D
satisfying the following conditions.

Q.nC=1I,
n#m=Q,NQ, is empty.
diameter Q, —~0 asn— .

Let I¥ denote the interior (relative to C) of I,. Then each point of C—Un=1 I is
accessible by a simple arc in D—\Jz-, Q..

Proof. Let I',=(boundary of Q,)—IF. Let
r=(c—O I,:“)u ) T
n=1 n=1

Let h, be a homeomorphism of I, onto I, that fixes each endpoint of I,. Define
functions ¢ and ¢, (p=1, 2, 3,...) on C by setting

W=t iftec-\J1,
O = h(d ifLel,
b=t ifLec- I

$(0) = b)) iffeland 1 =

[} o
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=
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Obviously ¢, is continuous. Moreover,

(0~ $)] = 0 ifte ) I
|$o(0)— ()| < diameter of Q, if{el, and n = p+1.

Since (diameter of Q,) — 0 as n-> oo, it follows that ¢, — ¢ uniformly on C,
so that ¢ is continuous. It is clear that ¢ is one-to-one and onto I', and since the
inverse of a one-to-one continuous function on a compact set is always continuous,
it follows that ¢ is a homeomorphism between C and I'. Thus I' is a Jordan curve.
It is not hard to show that each point of Q, can be joined by an arc not meeting I'
to some point outside of D, so each , is contained in the unbounded domain
determined by I'. Therefore, if B denotes the bounded domain determined by T,
then B< D—|J2-, Q,. But, by the corollary on p. 164 of [7], each point of T is
accessible by a simple arc in B, so the lemma is proved.

If S is a set of real numbers, let expi S denote {¢* : 1 € S}. If S and T are sets of
real numbers, let

A(S, T) = inf{|s—t+2mn| : s€ S, t €T, and m is an integer}.
If y is a real number, let A(y, T) mean A({y}, T).

Let {p.}n-1 be a countable dense subset of (—m, 7). We inductively construct a
sequence of natural numbers {n(k)};’-, and a sequence of real numbers {¢,}-; in
such a way that the following conditions are satisfied.

I. 0<eg,S1/2F+1,

IL =7 < prgy—mF/2 < pagy + mef/2 <.
Set

a(k) = pago—meR)2,  B(k)= pa)+meR/2.
Then we want

1. hstk=[a(h), B(A)] N [e(k), B(k)] is empty.

IV. &2 {A([e(F), B(h)], [e(k), B(K)])}*/28 whenever 1Sh<k—1.

V. pn €U, [e(i), B(i)] whenever 1S hSn(k).

We construct the sequences as follows. Let n(1)=1 and choose ¢, so as to satisfy
I and II. Then HI, 1V, and V are trivially satisfied at this point. Now suppose the
first p terms of the sequences have been constructed so that I through V are satisfied
for 12k=<p, 1Sh=p. Then we construct the terms for p+1 by taking n(p+1) to
be the least integer for which

puo e ) La), B

and choosing ¢,,, >0 small enough so that
1

2p+1+1

A

ép+1
T2 T 2

T < P+ "5 841 < Papan T 5 641 < T

2 2

3 Seatderts S 3 min Apug 1, [«(K), BK))).
ksp
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It is easy to check that I through V are then satisfied for ISk<p+1, 1ShZp+1;
so the sequences can be constructed in accordance with I through V.

Let x, denote the characteristic function of expi [«(n), B(n)] and let x be the
characteristic function of

0

expi [«(n), B(n)).

n=1

Then y=37_1 xa. Set

1 n
£ire) = 5 [ xleyPco=1)
and set

fre) = 5- [ Merpo-nya

Then f is a bounded harmonic function in D. By the Lebesgue monotone con-
vergence theorem, f=>:., f, (pointwise).
Let

Q, ={re® : 1—e, < r < 1 and A(6, [«(n), B)]) < (1—r)*4}.

It is easily seen that Q, is a Jordan domain in D and that Q, N C=expi [«(n), B(n)].
By using IV one can easily show that Q, N O, is empty when ns#m. I assert that

1) 0 < fu(z) £ &, whenever ze D—Q,.

That f+(z)20 follows from the fact that P,(6) is nonnegative. To prove the other
inequality, take any re’® € D—Q,. Then either r<1—e¢,, or else r>1—¢, and
A(0, [«(n), B(m)])= (1 —r)**. First suppose r<1—e,. Then

B(n) 1—- r2

1
Su(re'®) = 2—".[:(» (1=r)*+2r(1—cos (8—1)) a
2_11;‘[3(,,) 1—r2 dt = B(n)—o(n) 1+r

IIA

an) (1-’)2 277' l_‘r
1,1+ 1,2
=34 S T

On the other hand, suppose that r>1—e, and A(6, [«(n), B(n)])=(1 —r)*/%. Then,
for each t € [«(n), B(n)] and each integer m, we have |§—t+2mm|2=(1—r)'*, and
hence, since r>1—1,

cos (0—t) < cos (1 —r)*t

IA

La=nr ny

1-}v(1-r) (t€[on), Bn)D-

IA
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Therefore
0 B(n) l_r2
neen =0 [ s @
1 B(n) l—l‘ dr
= 2" am (1=r)*+4r4/(1-r)
_ 182 d+r(1-r) < lea 2(1-r)
"1 —r)2+}r\/(l —r) T 2" 4ry/(1=r)
_d=r

§ H’\/(l r) = 6”'\/(1—")

Thus

(2) fu(re®) £ exv/(1~r) whenr > 1—e, and A(6, [ofn), B()]) 2 (1—-r)*™.
Inequality (2) completes the proof of (1), and, in addition, it shows that

€)

Now, y is continuous on expi («(n), B(n)), so (by (ii)) f has general limit 1 at each
point of expi (&(n), B(n)). From this fact it is easy to deduce that there exists an arc
at each of the points e'*™, ¢!*™ along which f approaches 1. Thus f has the asymp-
totic value 1 at each point of expi [«(n), B(n)].

Take any { € C—|J:-, expi («(n), B(n)). By the lemma, there exists an arc y at
{ that does not meet any of the domains ,. By (1), and the fact that ¢, <1 /2"“

@I s U@+ S 1A

f«(2) approaches 0 as z=re'" approaches any point of c along any arc that
does not meet Q,.

II/\

©)

IA

Z | @D+ 553 2ml+ ; Whenever z€y.
n=1

By (3), each f,(z) approaches 0 along y, so (4) shows that

. 1

timsup. 1/@)] 5 g

Since m can be’arb'itrary, f(z) approaches 0 along y. Thus f has the asymptotic
value 0 at each point of

c- C)l expi ((n), B(n)).

We note that f has both the asymptotic values 0 and 1 at each of the points e'*™,
€™ _ o that these points are ambiguous. If we set

HO =1, e expi(oln), BOn),
#O =0, LeC— | exi lofm), B0},

Q=1 {=e* forsomen,

) =0, (=e*™ forsomen,
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then ¢ is a boundary function for f so it only remains to prove that ¢ is not of
Baire class 0 or 1. Let

A={e"™:n=1,23..) B={"*:n=123..}

It follows from V that each p, is in (Jx=; [«(n), B(n)], so Unr-1 expi [a(n), B(n)] is
dense in C. From this fact, and the fact that the closed arcs expi [«(n), B(n)] are
pairwise disjoint, it is easy to deduce that 4 and B are each dense in 4 U B, and
that 4 U B has no isolated points. Thus Cl (4 U B) is a perfect set. But ¢ takes
the value 0 at each point of 4 and the value 1 at each point of B, so the restriction
of ¢ to Cl (4 U B) can have no point of continuity. By the famous theorem of
R. Baire [2, p. 88] ¢ cannot be of Baire class O or 1.

THEOREM. Let f be a harmonic function in D such that, for some p> 1,

U |f(re)[7 d6 : r € [0, 1)}

is a bounded set of numbers. Let A be the set of points on C at which f has an asymptotic
value, and let G be the set of points on C at which the general limit of f exists. Then
A—G is a set of the first category.

Proof. Let S be the set of points on C at which the radial limit of f exists. Then
S< A, C—S has measure 0, and, if we define $({) to be the radial limit of f at {
for each { € S, then f'is the Poisson integral of . We can extend ¢ to a boundary
function ¢, of f that is defined on A. By the theorem on boundary functions for
continuous functions, there exists a function ¢ on A that is of Baire class 0 or 1
and differs from ¢; on at most a countable set. But then, since ¢({)=4({) for
almost every {, f is the Poisson integral of ¢. By the version of Baire’s theorem on
pointwise limits of continuous functions that is stated in Kuratowski’s book
[5, p. 301] (this reference was provided by the referee), there exists a set K< 4 such
that A —K is of the first category and ¢ is continuous at each point of K. By (ii)
and (iii), K< G, so 4—G is of the first category.

COROLLARY. Let f be a harmonic function in D such that, for some p > 1,

{ f |f(re®)|? do : r e [0, 1)}

is a bounded set. Let ¢ be a boundary function for f defined on a set E<C. Then the
set of discontinuity points (in E) of ¢ is of the first category relative to C.

Proof. Obviously ¢ is continuous at each point of E where the general limit of f

exists.
The same results hold for analytic functions, as can be seen by applying the above
theorem and corollary to the real and imaginary parts. The example of Bagemihl
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and Piranian [1, Theorem 6] shows that in the above theorem and corollary the
hypothesis on the integrals

[ 1seye as

cannot be omitted.
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