ON A BOUNDARY PROPERTY OF CONTINUOUS FUNCTIONS
T. J. Kaczynski

Let D be the open unit disk in the plane, and let C be its boundary, the unit
circle. ¥ x is a point of C, then an arc at x is a simple arc y with one endpoint at
x such that vy - {x} € D. If f is a function defined in D and taking values in a
metric space K, then the set of curvilinear convergence of f is

{x € C| there exists an arc y at x and there exists

a point p € K such that lim f(z)=p}.
Z— X
S ZAEY

J. E. McMillan proved that if f is a continuous function mapping D into the Riemann
sphere, then the set of curvilinear convergence of f is of type Fg 5 [2, Theorem 5].
In this paper we shall provide a simpler proof of this theorem than McMillan’s, and

we shall give a generalization and point out some of its corollaries.

Notation. I S is a subset of a topological space, S denotes the closure and S*
denotes the interior of S. Of course, when we speak of the interior of a subset of
the unit circle, we mean the interior relative to the circle, not relative to the whole
plane. Let K be a metric space with metric p. If xy5 € K and r > 0, then

S(r, xg) = {x € K| p(x, x)) <r}.
An arc of C will be called nondegenevate if and only if it contains more than one
point.
LEMMA 1. Let & be a family of nondegenevate closed avcs of C. Then
UIeJ I- Uleg T* is countable.

Proof. Since U{eﬂ I'* is open, we can write UIGJ I = UI1 J,, where {J_}
is a countable family of disjoint open arcs of C. If

Xq € U I- U r*,

Ied 1ed

then for some Iy € &, X is an endpoint of I. For some n, I’B C J,, so that

Xp € -jn . But x5 ¢ J,,, so that X is an endpoint of J,,. Thus Uleg/f I- Uléy I*
is contained in the set of all endpoints of the various J ; this proves the lemma. B

In what follows we shall repeatedly use Theorem 11.8 on page 119 in [3] without
making explicit reference to it. By a cross-cut we shall always mean a cross-cut of
D. Suppose y is a cross-cut that does not pass through the point 0. If V is the
component of D - y that does not contain 0, let L(y) = VN C. Then L(y) is a non-
degenerate closed arc of C.
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Suppose £ is a domain contained in D - {O} Let I" denote the family of all
cross-cuts y with y N D C @, Let

@ = U e, 150 = U Lo,
yel veT

Let acc (R2) denote the set of all points on C that are accessible by arcs in Q.

The following lemma is weaker than it could be, but there is no point in proving
more than we need.

LEMMA 2. The set acc(R) - 15(R) is countable.

Proof. By Lemma 1, I(R2) - I5(®2) is countable; therefore it will suffice to show
that acc () - I(2) is countable. If acc(2) has fewer than two points, we are done.
Suppose, on the other hand, that acc () has two or more points. If a € acc (), then
there exists a' € acc(R2) with a' #a. Let y, v' be arcs at a, a', respectively, with

yNDCQ, ' NDCA.

Let p be the endpoint of  that lies in 2, p' the endpoint of y' that lies in . Let
Y" C Q be an arc joining p to p'. The union of y, y', and y" is an arc 6 joining a
to a'. By [4], there exists a simple arc 6' C § that joins a to a'. Clearly, &' is a
cross-cut with 8 N DCQ and a, a' € L(6'). Thus a € I(R2), and so

acc(Q)cCcI(R). =

LEMMA 3. Suppose , and Q, ave domains contained in D - {0} If
(1) I,(Q) Nacc(Q,) and 1y(R,) Nacc(2,)

ave not disjoint, then Q) and Q, are not disjoint.

Proof. We assume 2; and 2, are disjoint, and we derive a contradiction. Let
a be a point in both of the two sets (1). Let 7; be a cross-cut with y; N D C ©;
such that a € L(y;)* (i=1, 2). Let U; and V; be the components of D - y;, and (to
be specific), let U; be the component containing 0. Note that y; N D and Y, N D
are disjoint.

Suppose y; NDCV, and ¥, N D C V;. Then, since y;y N Dc U;, U; hasa
point in common with V,. But 0 € U; NU,, so that U, has a point in common with
U, also. Since U; is connected, this implies that U; has a common point with
v, N D, which contradicts the assumption that y, N D C V,. Therefore yy ND ¢ V,
or y, ND ¢ V;. We conclude that either y; "D c U, or y, NDC U;. By sym-
metry, we may assume that y, "D C U, .

It is possible to choose a point b € L('yl)* that is accessible by an arc in , ,
because a is in the closure of acc(2,). Let y be a simple arc joining b to a point
of ¥, N D, such that ¥ - {b} c Q,. Then y - {b} and y; are disjoint. Also,

v - b} contains a point of U; (namely, the point where y meets Yy N D); there-
fore y - {b} C U;. Hence b'e U;. Since b € L(y;)*, this is a contradiction. m

THEOREM 1 (J. E. McMillan). Let K be a complete separable metric space,
and let f be a continuous function mapping D into K. Let

X = {x € Cl theve exists an arc v at X for which lim f(z) exz'sts} .
Z —X

zZ€Y
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Then X is of lype Fy5 .

Proof. Let {p,}}.; be a countable dense subset of K. Let {Q(n, m)}” _; be
a counting of all sets of the form

where 6 is a rational number. Let {U(n, m, k, Q)}OE:I be a counting (with repeti-
tions allowed) of the components of

n

1-1<r <1 and 9<t<e+2”},

-1 (S(—zl;l, pk) ) N Q(n, m).

(We consider @ to be a component of §.) Let
A(n, m, k, £) = acc[U(n, m, k, £)].

Set
0

[>e] o0 [>e]
v= U U U1 wnmx 0)nEmmx 0.
n=1 m=1 k=1 £-1

Since I4(U(n, m, k, £)) is open, it is of type F, . It follows that Y is of type F 4 .
I claim that Y € X. Take any y € Y. For each n, choose m[n], k[n], ¢[n] with

(2) y € I)(U(n, m[n], k[n], ¢[n])) N A(n, m[n], k[n], £[n]) (=1,2,3, ).

For convenience, set U, = U(n, m[n], k[n], ¢[n]). By (2) and Lemma 3, U, and
U,+; have some point z, in common. For each n, we can choose an arc y, C Upy)
with one endpoint at z, and the other at z ,; . Then y, € Q(n+ 1, m[n+ 1]). Also,

ye An+1, mn+ 1], k[n+1], £[n+1]) € U,y € QM+ 1, m[n+1]),

27+ 1
n+1

and therefore each point of v, has distance less than from y. Now

27 +1
n+1
one endpoint at y.

o0
— 0 as n — «; hence, if we set y = {y} U Un=1 Y, then y is an arc with

Since U, and U, ;; have a point in common,

s(Fng) O (s(F egn)

have a common point, and hence

1 . 1
S (F’ Pk [n] ) and S ( gnt1? Px[n+1] )
have a common point. Therefore, if p is the metric on K, then

1 1 1,
APy [n]s Pi[nr1]) S SnF gnrT < a1
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and therefore

r

4 1 1
p(pk [n]’ pk[n+r]) S i‘zzi p(pk[n+i-l]’ pk[n+i]) < i=21 2n+i~2 < 2n-2'

Thus { pk[n]} is a Cauchy sequence and must converge to some point p € K. Be-
cause

-1 1
ynCUn+1Cf (S(2n+l’pk[n+l])) and pk[n]?p,

lim f(z) =p. It is possible that y is not a simple arc, but by [4] we can replace y
z Yy

z€ Y

by a simple arc y'Cy. Thus y € X, and we have shown that Y C X.

Suppose x € X. Let y, be an arc at x such that f approaches a limit p' along
Yo- Take any n. Choose k with p' € S (5171’ pk) . Choose m so that x is in the

interior of Q(n, m) N C. Then 7o has a subarc y;, with one endpoint at x, such that
- 1
7(')—{X}CQ(n;m)nf 1(S(§1;pk))'

Hence, for some ¢, x € ace[U(n, m, k, £)] = A(n, m, k, ¢). This shows that

xc U U am m,x 0.

n=1 m=1 k=1 g=1

o0

By Lemma 2, the set

A(n, m, k, £) - Io(U(n, m, k, £)) = A(n, m, k, ¢) - [IO(U(n, m, k, ¢)) N A(n, m, k, ¢)]

is countable. It follows by a routine argument that

N U somro-N U roem ks 0)0am 5 o]

n m,k,{ n m,k,f{

is countable. Because

ﬂ U [IO(U(n, m, k, ¢)) N A(n, m, k, )] = Y C X cC n U A(n, m, k, ¢),

n m,k,( n m,k,{

the set X - Y is countable, and therefore X is of type F;5 . ®

Before stating our generalization of the foregoing theorem, we must say a few
words about spaces of closed sets. If K is a bounded metric space with metric p,
let ¥(K) denote the set of all nonempty closed subsets of K. Hausdorff [1, page 146]

defined a metric p on #(K) by setting

p(A, B) = max { sup dist (a, B), sup dist(b, A)} ,
a€cA beB
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where dist(x, E) denotes inf p(x, e). If K is compact, then #(K) is a compact

e €E
metric space with p as metric [1, page 150].

If f maps D into K and if v is an arc at a point x € C, we let C(f, y) denote
the cluster set of f along y; that is, we write

C(#, v) = {p € K| there exists a sequence {z,} cy 0D
such that z_ — x and f(z ) — pt.

THEOREM 2. Let K be a compact metric space, and let € be a closed subset
of €(K). Let f: D — K be a continuous function. Then

{x € C| there exists an arc y at x and there exists

E € & such that C(f,y) C E}

is a set of type Fs5 .
Proof. I ¢>0 and E € ¢(K), let

#(g, E) = {a € K| there exists b € E with p(a, b) < €} .
Note that & (e, E) is open and that
Fe ¢(K), p(E, F) < ¢ = FcC (g, E).

Let {P(k) } L=] be a countable dense subset of € (such a subset exists, because
every compact metric space is separable). Let

= {x ¢ Cl there exist an arc y at x andan E € §
such that C(f, y) c E}.

[>]
Let {Q(n, m)}m=1 be defined as in the proof of the preceding theorem. Let
{U(n, m, k, £)}7-; be a counting (with repetitions allowed) of the components of

f'l(f/(%, P(k)) ) N Q(n, m).

Let A(n, m, k, ¢) = acc[U(n, m, k, £)], and set

n U U U I,(U(n, m, k, 2)) N Af(n, m, k, ).
n=1 k=1 £=1

m=1

Since I,(U(n, m, k, £)) is open, it is of type Fy . It follows that Y is of type F; 5 .

I claim that Y C X. Take any y € Y. For each n, choose m[n], k[n], £[n] so
that

(3) y € 1,(U(n, m[n], k[n], ¢[n])) N A(w, m[a], K[a], £[a])

Set U, = U(n, m[n], k[n], £[n]). Since € is compact, there exista P € & and some
strictly ascending sequence {nj}gozl of natural numbers such that
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P(k[nJ]) T P.

in common. For each j,
Then

By (3) and Lemma 3, U,  and Un_+1 have some point z;
J )
nj4) with one endpoint at z j and the other at z 541

7j € Q041 , m[n;4;]). Also,

choose an arc 75 C U

y € Alnjyy, mngy ], k[0 ], £n5]) © Uniy © Qlnjyy, mngy,]),

1 from y. Now

and therefore each point of Y has distance less than 23 .1_1
J
21+ 1

N+l
one endpoint at y.

cO
— 0 as j — «; therefore, if we set y = {y} U Uj=1 vj, then y is an arc with

I claim that C(f, y) € P. Take any p € C(f, y). There exists a sequence
{w 12, in v - {y} such that w, -y and f(w, ) 7 p. Let & be an arbitrary posi-

tive number. Choose j; so that p(P(k[n 1), P) < 8/3 for all j > jo. Choose j; so
that j > j; implies 1/n. 1 <€/3. We can choose an s such that w_ € y; for some
i>]jg, J; and such that

(4) plE(wy), p) < 5.

Then

1
i+l

tw,) € ;) C£(U, ) C 72, Pking,1))

and therefore we can choose a point q € P(k[ni +l]) with

(5) pf(w,), q) < —— <

£
i+l 3’

Moreover, because p(P(k[n,,,]), P) <&/3, there exists some q' € P with
(6) plg, @) < 5.

Together, (4), (5), and (6) show that p(p, q') < &. Since P is closed and ¢ is arbi-
trary, this proves that p € P. Hence C(f, y) C P € £. By [4], we can if necessary
replace y by a simple arc ' C y; it follows that y € X. Thus Y C X.

Now suppose x € X. Choose an arc yg at x such that C(f, yy) C P, for some
P, € €. Take any n. Choose k with p(P,, P(k)) < 1/n. Then
1 1
Py c 7 (2, p() hence C(t, 7o) < # (=, P() ) .

Choose m so that x is in the interior of Q(n, m) n C.

H'Ip-.m

If for each natural number t there exists a point z} € 5 N S( X ) N D with

zég?’f'l(g(—ﬁ, P(k)) ) , then
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@) € K - & (?11 P(k) )

and since K - & (%, P(k)) is compact, there exist some a € K - ¥ ( %, P(k)) and

a subsequence {f(zi':i)};i1 such that f(z,'ci) +a. But then a € C(f, v,), contrary to
the relation C(f, yy) C & (1_11’ P(k)) . We conclude that there exists a natural number
t for which

v 0 s(tl x) AD C f'l(y(%, P(k)) ) .
It follows that y, has a subarc y(, with one endpoint at x such that

'y(') -{x} c f'l(g’(-rlz, P(k)) ) N Q(n, m).

Hence there exists an £ such that
x € acc[U(m, m, k, ¢)] = A(n, m, k, £).

This shows that

o0

ch U U A(n, m, k, 2).

n=1 m=1 k=1 {=1
By Lemma 2, the set

A(n, m, k, ¢) - I,(U(n, m, k, ¢)) = A(n, m, k, £) - [IO(U(n, m, k, £)) N A(n, m, k, £)]

is countable. It follows easily that

N U anmx -0 U [pyum m,x 0) nAm, m, & 0]

n m,k,f n m,k,{

is countable. Since

N U 1,00k 00&n s ol=vcxcl U ammx 0,

n m,k,{ n m,k,?

X - Y must be countable. Thus X is the union of an F5-set and a countable set, .
and hence it is of type F;5. W

In each of the following four corollaries, let f denote a continuous function map-
ping D into the Riemann sphere.

COROLLARY 1 (J. E. McMillan). Let E be a closed subset of the Riemann
spheve. Then the set

{x € C| there exist an arc v at x and a point p € E
such that lim f(z)=p}

zZ—X
z €y



320 T. J. KACZYNSKI

is of type Fy 5.
COROLLARY 2. Suppose d > 0. Then the set

{x € C| there exists an arc v at x such that
[diameter C(f, y)] < d}

is of type Fy 5 .
COROLLARY 3. Let E be a closed subset of the Riemann spheve. Then the set

{x € C| there exists an arc v at x with C(f, y) CE}

is of type Fy g .
COROLLARY 4. The set

{x € C| there exists an avc y at x such that C(f, )

is an arc of a great circle }

is of type Fys-

We can obtain all these corollaries by taking & to be a suitable family of closed
sets and applying Theorem 2, To prove Corollary 4, we need the fact that C({, y) is
always connected. One could go on listing such corollaries ad infinitum, but we
refrain.

It is interesting to note that in Corollary 1 it is not necessary to assume that E
is closed. By combining Corollary 1 with Theorem 6 of [2], one can prove that the
conclusion of Corollary 1 holds even if E is merely assumed to be of type Gg.
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