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1. Introduction. Throughout this paper D will denote the open unit disk
(in two-dimensional Euclidean space) and C will denote its boundary, the unit
circle. Bagemihl and Piranian [2] have introduced the following definition.

Definition. If x ¢ C, an arc at z is a simple arc v having one endpoint at
such that v — {z} € D. Let f be any function that is defined in D and takes
its values in some metric space S. Then a boundary function for f is a function
¢ on C such that for every z e C there exists an arc vy at « with

lim {() = ().

ey

The purpose of this paper is to prove several theorems concerning boundary
functions. These theorems include answers to two questions raised in [2] (see
Problem 1 and the conjecture on p. 202).

The set of real numbers will be denoted by R, N-dimensional Euclidean
space will be denoted by RY, and the Riemann sphere will be denoted by =.
Points in RY will be written in the form {(x, , x», -+ , ay) rather than
(#y , 2, -+ , xy) (to avoid confusion with open intervals of real numbers
in the case N = 2). Whenever we speak of real-valued functions we mean
finite-valued functions, and whenever we speak of increasing functions we
refer to weakly increasing (nondecreasing) functions. The abbreviations “Lu.b.”
and “g.lb.” stand for “least upper bound” and ‘“‘greatest lower bound” re-
spectively. Finally, it should be noted that our definition of the Baire classes
is slightly unconventional (see p. 6 and p.14) in that we consider Baire class
« to include Baire class 8 for every 8 < a.

2. Boundary functions for homeomorphisms.

Definition. If E C D, let acc (E) denote the set of all points on C which
are accessible by arcs in E.

1T would like to thank Professor G. Piranian for his encouragement.
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Lemma 1. Let A be an arcwise connected subset of D and let B be a connected

subset of D. Suppose that A M\ B = ¢. Then acc (A) and B have at most two points
M conmmon.

Proof. Assume that p, , p. , ps; are three distinct points of ace (4) N B
and derive a contradiction. Let v, be an arc joining p; to a point ¢; ¢ A, with
v:i — {p:} €A @ = 1,2 3). Let v be an arc in A joining ¢, and ¢, . Putting
¥1, 72 and v together, we obtain an are I' joining p, to p,, with I'— {p, , p,} < 4.
We can assume I is a simple are, for if I' is not simple, p, and p, can be joined
by some simple arc I' & T (see [7]). Let L, , L, be the two open arcs of C de-
termined by the pair of points p, , p. . We may assume, by symmetry, that
ps & L, . According to [6] (Theorem 11.8, p. 119), D — T has two components
U, and U, , the boundary of U, being L, U T and the boundary of U, being
L, U T.

Let 4" be an arc in A joining g; to a point ¢ ¢ I' M A. Putting v and v’ to-
gether, we obtain an arc § joining p; to ¢. Starting at p; and proceeding along
9, let r be the first point of I' that we reach. Let A be the subarc of 6 with end-

points at ps and r. Clearly, A — {ps} € A. We can assume (according to [7])
that A is a simple are.

Since p; € L, . ps is not in U, . Since

A—{p,r} SD—-T=U,JU,,

A — {ps, r} must have a point in U, . But A — {p;, r} is connected, so A —
{ps,r} € U, .Hence Ais a cross cut of U, . Let M, , M, be the two open subarcs
of L, with endpoints p, , p; and p. , ps respectively. Let I'; , T, be the two
closed subares of I' with endpoints p, , r and p. , r respectively. According to
[6] (Theorem 11.8, p. 119), U, — A has two components V, and V,, the boundary
of V; being M; \U T'; U A and the boundary of V, being M, \U T, U A.

Since T\UAC A, BC V,U V, U U.. Recall that p; ¢ U, . It follows that
since p; £ B, B has a point in common with ¥, U V, . But B is connected,
s0o BC V,UV,.Wesee that p, ¢ V., , and therefore that B N\ V, + ¢ (because
p, ¢ B). Hence B C V,, so p, ¢ V, . But, since the boundary of V, is M, U
T, U A, p. ¢ V, . This contradiction proves the lemma.

Lemma 2. There exists a countable family $ of open disks such that every
open set U < R* can be written in the form U =\, S, , where S, ¢ $ and S, < U.

Proof. Let {p,} be a countable dense subset of R, and let $ be the family
of all open disks of rational radius having some p, as center. $ is clearly countable.

If U is an open set it is easy to show that for each x ¢ U there exists an S, ¢ §
withz e S, € 8, & U. Obviously

U=\US&..

zeU

Theorem 1. Let f be a homeomorphism of D onto D, and let ¢ be a boundary
function for f. Then there exists a countable set N such that ¢ |¢-n s conttnuous.
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Proof. Take an arbitrary S e 8. It is easily shown that D N\ Sand D — S
are both connected, so (D M S) and (D — S) are both connected. Given
z, € C, let v be any arc at z, . If

o ¢ ace (f7(D N 8)),

then we can choose points on y arbitrarily close to z, which are not in ' (D N 8),
S0

zoeD —F (DNRS) =F D = S).
This shows that
(1) C Cace(('(DN8)UTUD — 8).
Let

F =ace (DN S)NTYD — S).
By Lemma 1, F contains at most two points, and from (1) we see that

ace (DN K) = F U (€~ (D~ 9).
Thus we have shown that for each S ¢ § we can write
ace (f (DN 8)) = Fs U Gy,

where Fy is finite and G is open (relative to C).
For any arc v at a point z on C, the cluster set C(f, v) of f along v is defined by

C(f,v) = {weR*\J {=} | there exists a sequence {z,} v N D
such that z, — = and f(z,) — w}.

Let
E = {xe(C | there exist arcs v, , v. at x such that C(f, v.) N\ C(f, v2) = ¢}.
A theorem of Bagemihl [1] states that E is countable. Let
N=EU\UFs.

Se§

N is countable. Let ¢, denote the restriction of ¢ to C — N. )

If U is any open set, write U = U,, S, , where S, ¢ 8, S, & U. Suppose
zepy (U). Then ¢,(z) = ¢(x) £ S, for some n, which implies that z eace(f ' (S,MN D)).
Thus

2 (U) € Uace (f'(S. N\ D)) — N.

On the other hand, suppose z ¢ ace (f7'(S, N D)) for some 7, and z ¢ N. Choose
an arc v in (S, M D) with one endpoint at z. Clearly,

CHnes8NDS S CU.
Since z ¢ E,
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eo(x) = o(x) e C(f,v) S U,
80 x & @5 (U). Thus
Uace (f7(S. N D)) — N S o '(U),
50

@ '(U)

Il

Uace ('S, ND) —N=\UJEFs.,JGs) — N
= UG5, —N=(JGs)N(C —N).

Thus, for each open set U, ¢;'(U) is an open set relative to C—N. Therefore
@0 18 continuous. Q.E.D.

3. Boundary functions for continuous functions.

Definition. Let S and T be metric spaces. We will say the function f is
of Baire class 1(S, T') ¢f, and only if,
(i) domain f = S,
(ii) range f € T, and
(iii) there exists a sequence {f,} of continuous functions, each mapping S
into 7, such that f, — f pointwise on S.
We will say the function g is of honorary Baire class 2(S, T) if, and only if,
(i) domain g = 8,
(ii) range ¢ € T, and
(iii) there exists a function f of Baire class 1(S, T') and a countable set N
such thatf 'S—-N =g ]S—N .

Lemma 3. Let f be a continuous real-valued function in D and let ¢ be a finite-
valued boundary function for f. Let r and t be real numbers with r < t. Then

(A) there exists a Gy set G and a countable set N such that
¢ (Ir, +=)) 2 G 2 ¢7'(It, +=)) — N, and
(B) there exists a G5 set H and a countable set M such that
¢ (=, ) 2H 2 ¢ ((—, 1) — M.
Proof. Let

2
I

feemim=1-1,

A"={zsR2|1—}z<|z]<l},
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E, = {x ¢ C | there exists an arc v at z having one
endpoint on C, , with v — {z} C {'((— =, r)},

K = {x ¢ C | there exists an arc vy at z with
v~ {z} S~ ¢ +2)N}
Observe that

e (—»,n) S \_{E,. ,
and

¢_1((t —¢ +@) CK.

For the time being, let n be a fixed integer. If z ¢ K, we can find an arc v,
at z such that

v. — {2} S AN — ¢ + ).

Since an arc at z is by definition a simple arc, v, — {z} is a connected set.

It follows that v, — {x} must be contained entirely within one component
of the open set

AN = & ).

We denote this component by U, . U, is a nonempty open connected set.
Lej: T be the set of all points of K which are two-sided limit points of I,.

Assertion. If x,ye T and x # y, then U, N\ U, = ¢.

To prove this assertion we assume that z is a point of U, N U, and we derive
a contradiction. Choose points 2’ and y’ in v, — {«} and vy, — {y} respectively.
Join z to 2’ by an appropriate subare of v, . Join 2’ to z by an arc in U, . Join
ztoy’ by anarcin U, . Join ¢’ to y by a subare of v, . Putting these arcs together,
we obtain an arc a with endpoints at z and y such that

a— {2, 9} S AN~ e +=).

We can assume that « is a simple are, for if « is not a simple arc we can replace
a by a simple arc &/ C « having endpoints at z and y (see [7]). « is a crosscut
of D. Let L, and L, be the two open arcs of C determined by z and y. According
to [6] (Theorem 11.8, p. 119), D — « has two components, V, and V, , whose
boundaries are L, \U « and L, \J « respectively. From the fact that C, is con-
nected and does not intersect « it follows that C, is contained entirely within
one component of D — «. By symmetry, we may assume C, & V.

Since z is a two-sided limit point of E, , L, must contain a point of E, , and
hence a point of E, . Say w ¢ L, N E, . There exists a simple arc 8 joining w
to some point on C, , with

B — {w} S (—=,m).

B — {w} cannot have a point in common with «, because
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a = {ZE, y} - f-l((t ) +°°))1

and

U=, ) NFHE— ¢ +2) = ¢

Thus C, U (8 — {w}) is a connected set not meeting a. C, \J (8 — {w}) meets
Va,s0C, U (B — {w}) & V, . Consequently, w is in the boundary of V, .
But this is a contradiction, because w ¢ L; and the boundary of V, is L, U «a.
This proves the assertion.

From the assertion it follows immediately that T is countable; for any
family of disjoint nonempty open sets is countable. We know that the set S
of all points of E, which are not two-sided limit points of %, is countable.

KNE,=[KNSIVIKENE, —S)]=ENS)UT.

This shows that (for any n) K N E, is countable. So if we let
N=KN QE",, =.7Q(KHE’,,,
then N is a countable set. Let
¢g=c—-\UL.

n=1

G is a @G, set. Using the fact that

e (—=,n) S \JEn < \JE’,. ,

we find that
C—¢' (==, 2C - OE =G2K - N.
But
C—¢'((—w,n) =¢ (I, +=))
and
K267 ((t— ¢ +2) 2 (It, +2)),
S0

e (lr, +) 2G4 2K — N2 ¢ '([t, +=)) — N.

This proves (A). To prove (B), simply replace f and ¢ by —f and —¢, and
apply (A).

Theorem 2. Let f be a continuous real-valued function in D, and let ¢ be
a finite-valued boundary function for f. Then ¢ s of honorary Baire class 2(C, R).

Proof. For each pair of rational numbers r and ¢ with r < ¢, choose G;
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sets G(r, t), H(r, t) and countable sets N(r, t), M(r, t) such that

¢ (Ir, + ) DG, 1) 2D ¢7'([t, + =) — N, 1),
and

‘P—l((— @, t]) =2 H(T, t) = ‘P.—l((_ @, T]) - M(T, t)°
Let

N = U [N(T, t) U M(T, t)]’

where the union is taken over all pairs of rationals r, t with r < ¢. N is countable.
Let ¢, denote the restriction of ¢ to C — N, and let G*(r, t) = G(r, ) — N
Since every countable set is an F, set, G*(r, t) is a G set. Observe that

@) oo (Ir, + =) = ¢ '(Ir, +=)) — N 2 G*, 1)
Do (It, + =) — N = ¢, '([t, + ).

If ¢t is a fixed rational number, let {r,} be a strictly increasing sequence of
rational numbers converging to ¢. Then, by (2),

N i, +=) 2 N 646, ) 2651 +=) = o', +)),

SO

e[t + ) = )G n 1)

n=1

This proves that for every rational ¢, o5 ([t, + «)) is a G; set.
If u is any real number, choose a strictly increasing sequence {¢,} of rational
numbers converging to u. Then

©

9031([“1 + @) = =1 ([ s ),
50 ¢5'([u, + «)) is a G; set. By a similar argument, we find that o5 ((— «, u])
is a @; set for every real u. So

o5 (@, +)) = (C = N) N (C — ¢3'(— =, u])

is the intersection of an F, set with C — N. By a theorem stated on p. 309
of Hausdorff’s paper [5], ¢, can be extended to a real-valued function ¢, on
C such that for every real u, o7'([u, +=)) is a G; set and o' ((u, + «)) is
an F, set. By Theorem IX of the same paper, ¢, is of Baire class 1(C, R). Since
o(x) = ¢,(x) except for ze N, ¢ is of honorary Baire class 2(C, R). Q.E.D.

Corollary. Let f be a continuous function mapping D into R", and suppose
¢ : C — R" is a boundary function for f. Then ¢ is of honorary Baire class 2(C, R").

Proof. We simply write our functions in terms of their components, say
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f= <f1 ’er e st): and ¢ = <¢1 y P2, " " v(PN)'

Obviously ¢; is a boundary function for f; , and so is of honorary Baire class
2(C, R). We choose a function ¢; of Baire class 1(C, R) which agrees with o,
except on a countable set M ; . Setting

g=A{91,92, ", 9m

it is clear that g is of Baire class 1(C, R"), and that g agrees with ¢ except
on the countable set \JY., M, . Hence ¢ is of honorary Baire class 2(C, R").
Q.E.D.

Lemma 4. Let g be a continuous function mapping C into R®. Let q be a
point of R® and let e be a positive real number. Then there exists a continuous
function g* : C — R® such that q does not lie in the range of g*, and for all x ¢ C,

lg@@) — gl = e= g(2) = g*(2).
Proof. Let
S={yeR’ ||y — ql <¢}.

If g(C) C 8, let g* : C — R® be any continuous function whose range does

not include g. Otherwise, g~'(S) is a proper open subset of C and hence can
be written in the form

g—l(S) = kav
where
Ik = {6“ Ia,, < I < bk},
and
k+l=I,NI = ¢.

Since g7'({q}) is a closed (and therefore compact) subset of g7*(S), ¢7'({q}) is
covered by a finite number of I’s. Say

g {HhELVLY - UI,.

The endpoints ¢*** and e™* of I, are not in g7'({g}), so we can construct, for
each k, a continuous function g, : I, — R® such that

g™ = g™, gue™) = g™,
and ¢ is not in the range of g; . Define
g*) = glx), f zeC — I, VI, U - ---UIL),
g¥ @) = glx), if zel,, k=1, ,n.
It is easy to show that g* has the desired properties.

Theorem 3. Let f be a continuous function mapping D into the Riemann
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sphere =, and let ¢ be a boundary function for f. Then ¢ vs of honorary Baire
class 2(C, Z).

Proof. Since T is a subset of R, the corollary to Theorem 2 shows that
¢ is of honorary Baire class 2(C, R®). Let g be a function of Baire class 1(C, R®)
which differs from ¢ only on a countable set N. Then g(C) — Z is countable,
so there exists a point ¢ inside of T (that is, in the bounded open domain de-
termined by =) which is not in the range of g. Let {g,} be a sequence of con-
tinuous functions converging to g. By Lemma 4 we can find (for each n) a
continuous function g* : ¢ — R?® such that ¢ does not lie in the range of g* ,
and forallz e C,

0.0 = al 2 3= 0. = g3

It is easy to show that g% — g.

We define a function P as follows. If a ¢ R* — {q}, let I be the unique ray
with endpoint at ¢ that passes through a, and let P(a) be the intersection
point of ! with =. Obviously, P is a continuous mapping of R* — {q} onto Z,
and P fixes every point of =. Therefore

P(g@) = o), if z¢N,
P(g*(x)) is a continuous function from C into Z, and
P(g%(x)) — P(g(x)) as n— o.
This shows that ¢ is of honorary Baire class 2(C, Z). Q.E.D.

4. Boundary functions for Baire functions. In this section we concern
ourselves only with real-valued functions. We shall prove that a boundary
function for a function of Baire class & = 1is of Baire class o + 1. It is convenient
to prove this theorem for functions that are defined in the (open) upper half-
plane and have boundary functions defined on the z-axis rather than for func-
tions defined in D. Once the theorem is proved in this form it is a routine com-
putational matter to show that it also holds for functions defined in D. The
reader should be familiar with the results of Hausdorff [5] before reading this
section. Unfortunately, we must begin with some tedious preliminaries.

Let

D" = {z,y) |z, yeR,y > 0},
C° = {{z,0) | z e R},

e ={<x%> st},

A3={($,y>\$,y€R,0<y<h1‘}‘

We will regard C° as being identical with R.

Il
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Suppose S is a metric space. Let G5 be the class of all open sets of S and
let F5 be the class of all closed sets of S.

A function f : § — R is of Baire class 0 if and only if it is continuous. For
any ordinal number « > 0, f is of Baire class o if and only if f is the pointwise
limit of a sequence of functions each of Baire class less than o.

Let 91§ denote the class of all sets M < S such that

M = {7, +=),
for some real r and some function f of Baire class o on S. Let 91§ denote the
class of all sets N C 8 such that

N = {7, + =),

for some real r and some function f of Baire class « on S. It is easily shown
that M7 = Ggand N = Fy .
Let

9 = 96"‘ = gR ’
F = gco = ‘J"R ’
M* = M = ML,
‘LT(.“ = mgo = 9’62 ’
If 9 is any class of sets, let O, denote the class of all countable unions of members
of 0, and let 0; denote the class of all countable intersections of members of ©.
Each of the following facts is either explicitly stated in [5], or can be easily

deduced from statements found in [5], or is obtained by a routine transfinite
induction argument.

I- mg = ()‘U m)é)sa ’ mg = ()\EJ mt\s)ﬂ .
<a a

II. Let A be any subset of the metric space S. If f is a function of Baire
class a on 8, then f |4 is a function of Baire class ¢ on 4.

III. Let f be a function of Baire class « whose domain contains {(z, b) | z ¢ R}.
Then f({z, b)) is a function (of x) of Baire class a.

IV. If A € 8, then

amg = {M N A|Meomg},
9i = {NN A|Nengs}.
V. If f is of Baire class a on S, then for each real r,
(=, ) eoms,
and
(=, rhens.
VI. If @ = 2, then (Gs)s \J (Fs)e S MG M 9N .
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VII. Ee i = S — E e 905 .

VIII. ong and 9§ are closed under finite unions and intersections. 9§ is
closed under countable unions and 9t§ is closed under countable intersections.

IX. Let f be a real-valued function on S. Suppose that for every real r

17, + ) e N5,

and

i, + ) eoms .
Then f is of Baire class a.

Definition. If A and B are two sets, we will call A and B equivalent, and
write A ~ B, if and only if A — B and B — A are both countable. It is easily
verified that ~ is an equivalence relation.

Lemma 5. If A ~E,thenS — A ~ 8 — E for any set 8. If A, ~ E, (for
all n in some countable set N), then

Ud,.~\UE, and (YA.~ NE..

neN neN nelN neN

The proof of this lemma is routine.

Definition. An interval of real numbers will be called nondegenerate if it
contains more than one point.

Lemma 6. Any union of nondegenerate infervals is equivalent to an open set.

Proof. Let g be a family of nondegenerate intervals and let H = Ug. For
any z and y let

I(xv Z/) = [xf y]a if z= Y,
and let

A
R

Iz,y) = ly, 2], if y
Define a relation ® on H by

a®y = Iz, y) S H, (z,yeH).

It is easy to show that ® is an equivalence relation on H. Inview of the fact
that a set A of real numbers is an interval if and only if

z,ye A=1I(x,y) C A4,

it is obvious that each equivalence class is an interval. For each x ¢ H, there
exists an I ¢ 9 with 2 ¢ I. Every member of I is equivalent to x. Thus each
equivalence class contains more than one point, and hence is a nondegenerate
interval. Let {J,} be the family of equivalence classes. Any disjoint family
of nondegenerate intervals is countable, so there are only countably many J.’s.
Let E be the set of all endpoints of the various J,’s. Then E is countable and
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H=UJ.~UJ.—-E=\UJux,

where J* is the interior of J, . This proves the lemma.

Lemma 7. Let h be an increasing real-valued function on a nonempty set
E C R. Suppose that |[x — h(z)| < 1 for every x ¢ E. Then h can be extended
to an increasing real-valued function h, on R.

Proof. Let e = glb. E (¢ may be — o). For each z, ¢ (¢, -+ =) set

hl(xo) = l-u.b. {h(x) I X e (_ © , xo] n E}.
Since |z — h(z)] < 1forallz ¢ E,

ze(—o,x]) NE=h() =z, + 1,

80 h, is finite-valued. If ¢ = — o we are done. If ¢ > — o, then z ¢ E implies
h(x) = e — 1, 80 h is bounded below. For x, ¢ (— «, ¢] set

hi(zo) = g.1b. {h(z) |z E}.
It is easily verified that k, has the desired properties.

Lemma 8. Let f be a real-valued function of Baire class a on R. Let h be
an increasing real-valued function on R. Set g(xz) = f(h(x)). Then there exists
a countable set N such that g |z_x s of Baire class a.

Proof. 1t is well known that an increasing function has at most countably
many discontinuities. Let M be the set of discontinuity points of A. If f is
of Baire class 0, then ¢ is continuous at all points of R — M, 80 ¢ |- is of
Baire class 0. This proves the lemma for the case « = 0.

We now proceed by transfinite induction. Suppose the lemma holds for
every ordinal A < «. If { is of Baire class « we may choose a sequence of func-
tions {f,} converging to f, where f, is of Baire class \, < a. If we set g,(x) =f,.(h(x))
it is clear that g,(z) — f(h(z)) = g(x). By the induction hypothesis we may
choose (for each n) a countable set N, such that g, |z-». is of Baire class A, .
Let N =\U; ., N, .Then g, |z-n is of Baire class \, , and since ¢, |r_x — ¢ |z-n,
g | r—w is of Baire class a. This proves the lemma.

Theorem 4. Let f be a real-valued function of Baire class « = 1 on D°, and
let ¢ be a finite-valued boundary function for f. Then ¢ s of Baire class a + 1.

Proof. Let r and ¢ be two real numbers with » < ¢. r and ¢ will remain fixed
throughout the first part of the proof. Set

P = 90_1((* ®, T]),
Q = ¢ '(It, + =),
E=PUQ,

t—-r'
4

€ =
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Observe that P M Q = ¢. For each z ¢ E, choose an arc v, at z such that

lim fz) = o(2), 7. C {2] [z — 2| = 1},

2>z
zZeY e

and
(@ fv) S(—,r4¢, if zeP
D) ) S —¢ +=), if z£Q.

(This is accomplished by cutting the arc off sufficiently close to z.) We remark

that if x ¢ P and y ¢ @, then v, N v, =¢.
We will say that v, meets v, in A, provided that v, and v, have subarcs
v! and v} respectively such that z e vy, S A, ,y ey, S A, and v, N v) * ¢. Let

L, = {zxeP| (¥n)3y * 2)(v. meets v, in 49},
L, = {zeQ| (vn)@y * z)(v. meets v, in A2},
{

M, = {x e P | (3n)(y. meets no v, (y * z) in 42},
M, = {zeQ] (3n)(y, meets no v, (y * z) in A%},
L =L,JL,,

M =M,\JM,.

Observe that L, , L, , M, , M, are pairwise disjoint, and that P = L, U M,
andQ =L, U M,.

For each z & M, let n, be an integer such that v, meets no v, (with y + x)
in A°, . Notice that n = n, implies v, meets no v, in A2 . Let

K, = {xeE|vy, meets Cy,and if x ¢ M, n, < n}.

Clearly E = \J~., K, . Moreover, K, C K ., for each n.

Take any fixed integer n. For each x ¢ L, we can find a y¥ + z such that v,
meets v, in A2 . Let I be the nondegenerate closed interval between z and y.
We shall show that I* C L,\J (C° — K,).If te I* , either t e C° — K,orte K,, .
Suppose t € K, . Then v, meets C2 , and (if ¢ e M) n, < n. It is clear from Figure 1
that v, must meet either v, or v, in A% . (This can be rigorized by means of
Theorem 11.8 on p. 119 in [6].)

, Ca

CO
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Consequently, ¢t ¢ M. Now x ¢ L, & P, so since v, intersects v, , ¥ ¢ Q. So
yeE — Q = P. Similarly, since y, meets y,ory,,te £ — Q@ = P. Thuste P —
M = L, . We have shown that ¢ ¢ I implies that t ¢ C° — K, or t ¢ L, , so
I" C L, U (C° — K,). It follows that (for each n)

LS(UDNECLV(EC ~-K)NE.

zeLo

Let W, = \},;2 1. 12 . By Lemma, 6, W, is equivalent to an open set.
L, C ((\ W,.) NE
n=1
c {r\ [L, U (C° — K,,)]}r\E = {LOU N e - Kn)} NE

n=1 n=1

= {L, N E} u{[f\(o°—K")]mE}=LOU¢=LO.

n=1

Therefore L, = ( ﬂf_l W.) M E. Since each W, is equivalent to an open set
there exists a G, & G; such that

Lo ~ GO m E .
Similar reasoning shows there exists a G, & G; such that
L ~G NE.

Next we study the properties of M, . It is convenient to define a function
w:R*—> Rby »({z,y)) = z. If e M N K, , then, starting at x and proceeding
along v, , let o,(x) be the first point of C? reached. Set hl(x) = n(s.(x)) (for
zeM N K,).

h? is an increasing functionon M N K, ;forif z, , 2, e M N K, and 2, < z,,
then, since v,, cannot meet v,, in A2, it is evident (see Figure 2) that = (s, (z,)) <
7 (e, (x2)). (The argument can be rigorized by means of Theorem 11.8 on p. 119
in [6].) Since

7. C {2 | | — 2| = 1}, |z — ()] < 1.
So by Lemma 7 h? can be extended to an increasing function &, on C°.
’16; (Xt)

A (X
F’,L" vg( 2.)

FI1GURE 2.
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0 = 1({ne), 1)).

1
0.0) = f(<h2(w), 5>) = f(o@).
If x ¢ M, then for all sufficiently large n, x e M N\ K, , so

Let

Forze M NK,,

lim g,(@) = lim (0, (@) = o(a).

n—®

Thus ¢, |xr — ¢ |» . By III, f({z, 1/n)) is a function (of z) of Baire class «,
so by Lemma 8 we can choose, for each n, a countable set N, such that g, |¢o-w,

is of Baire class a. Let N = \U;.; N, . Then g, |»_» is of Baire class «. But
Gn |30 = @ |s—x , 50 @ |3—y is of Baire class « + 1.
Now

PN M —N) = (¢|u-n)"((—,r]) = TN (M~ N),

where T ¢ 9t*** (by IV and V). Clearly PN\ M ~ T N M.
We have

L=L, VL ~GNE)JY G NE)=(G\YG)NE,
80 L ~ G M E where G ¢ G; . Also
My=P"\M~TNM=TNE - L)
~TNE—-GNE]=[TNEC° - ®INE.
Since G £G;, C° — GeF,,s0 by VI and VIII, T N (C° — @) ¢ 7**". Thus
My~ T, N E,

where T, ¢ :1***. Now we can examine the properties of P.
P=L, UM~ G NE)YU T, NE)= (G IJT,)NE,
80, again by VI and VIII,
P~T, NE,

where 7', £ 91**". Since a countable set is in &, and the complement of a countable
set is in G; , it is easy to show (using VI and VIII) that

P=T,NE,
where T, £ 91", Since P N Q = ¢,
PCT,SC" —Q.

Remembering the definitions of P and @, and observing the fact that C° —

o '(It, +=)) = ¢ '((— =, t)), we can summarize the results of the first part
of the proof as follows.



604 T. J. KACZYNSKI

For each pair r, t of real numbers with r < t, there exists a set T(r, t) ¢ N***
such that

e (—w, ) ST, 1) S ¢ ' ((—, ).

Given any real r, let {t,} be a strictly decreasing sequence of real numbers
converging to r. Then

(=) = e (==, ).
So

(=2, ) S T ) S e (==, 1) = ¢ (= 7],
and hence
(=) = TG, 1.
By VIII,
(=) e

Since f is an arbitrary function of Baire class @ in D° and ¢ is an arbitrary
boundary function for f, we can replace f, ¢, r by —f, —¢, —r to find that

e '([r, + o)) e X
Also,
o ((r, + @) = C° — ¢ ((—w, r]) e M
By IX, ¢ is of Baire class a 4 1. Q.E.D.

5. Boundary functions for measurable functions.

Theorem 5. Let f be a real-valued Borel-measurable function in D° and let
o be a finite-valued boundary function for f. Then ¢ ts Borel-measurable.

Since every Borel-measurable function is of some Baire class «, this theorem
is an immediate consequence of Theorem 4. We now show that a boundary
function for a Lebesgue-measurable function need not be Lebesgue-measurable.

Let u denote Lebesgue measure on R and let x* denote Lebesgue measure
on R*. Let u, denote exterior Lebesgue measure on R; that is,

u.(B) = glb. {u(@) | Gis open and E C G},
for any set £ C R.

Lemma 9. Let h be an increasing real-valued function on a set E & R. Then
there exists an open interval I 2D E such that h can be extended to an increasing
real-valued function on I.
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Proof. If E is unbounded below, set ¢ = — «. If E is bounded below, set

a= glb. E, if (glb.E)g¢E,
a = (glb.E) —1, if (glb.E)eE.

If E is unbounded above, set b = -+ ». If F is bounded above, set
b = lub.E, if (lub.E)¢E,
b=(Aub. E)41, if (Qub.E)eE.

Let I = (a,b).Clearly E C I. Let ¢ = gl.b. E (e may be — « ). For x, ¢ (e, b) set
f@o) = Lu.b. {h(z) | z & (a, z]] N E}.

If e = a we are done. If ¢ > a then e ¢ E. For z, ¢ (a, €] set f(x,) = h(e). It is
easily verified that f is finite-valued and increasing, and is an extension of A.

Lemma 10. Let E C R be a set of measure 0 and let h be an increasing funciton
on E. Suppose h(E) has measure 0. Then {x 4+ h(z) | z ¢ E} has measure 0.

Proof. Extend h to an increasing function g on an open interval I = (a,b) D E.
Set gla) = — » and g(b) = + ». Take any ¢ > 0. Choose an open set G such

that I © G 2 E and u(@) < ¢/2. Choose an open set H 2 h(E) with u(H) < ¢/2.
Say

G=\UI, and H=\UJ..,

neN meM

where {I, | n ¢ N} and {J, | me M} are countable families of disjoint open
intervals. Let I, = (a, , b,), and observe that a, , b, ¢ [a, b]. Set

S = U{g(an)) g(bn)} - {-—oo, +°°}'

neN

Notice that S is countable. Set

K, = (g(a.), g(bn)).

One can easily verify that & # n implies K; N K,, = ¢.
If A and B are two subsets of R, let

A+B=1{a+b|laed,beB}.

It is easy to show that for any two intervals J and J/, u (J + J') = u(J) + u(J’).
Let W = {& + h(z) |z & E}.

Assertion.

wec@+ 9V UUILNg' V) + J.NEK)]

neN meM

To prove this, let w be an arbitrary point of W. Write w = = + h(z), where
2z ¢ E. For some n, z ¢ I,, . Since ¢ is increasing,
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h(z) = g(=) ¢ [g(a.), g(b.)].
If h(x) equals g(a,) or g(b,), then A(x) ¢ S, s0 w = = + h(z) ¢ E + S. On the

other hand, suppose A (x) * g(a.), g(b,). Then h(z) ¢ K, . Also, g(x) = h(z) e J,,
for some m. Thus h(x) e J,, N K,and x £ I, N ¢g~*(J,.), so that

w=2+h@)e (LN g () + JuN K.
This proves the Assertion.
Since g is increasing, g~'(J,,) is an interval, so both I, N\ ¢”'(J,,) and J,, N\ K,
are intervals. Also note that m = 1 implies ¢7'(J,.) N ¢7'(J;) = ¢. By the
Assertion,

p(W) £ wE + 8) + 2 2wl N g7 () + (Jm N K]

neN meM

S @+ 8+ X 2 kN g W) + sl N K]

= us(x\s{ s+ E) + ZN [m§ wlo N g7 () + mZM k(N K,)]

IIA

> w(s + E) + Ex‘, ) + ,,.%; w(JJn N K]

seS

0+ u@ + 2 2 wJnNK,)

neN meM

meM neN

(@ + mEM w(J) = uw(@) + wH) < e

A

Since e is arbitrary, u. (W) = 0.

Lemma 11. LetL = {{z,a) |z e E}and M = {{z,b) | z e R} be two horizonial
lines in R®. Let E be a set of (linear) measure 0 in L and let F be a set of (linear)
measure 0 in M. Let £ be a set of closed line segments such that

(a,) 81,328£,81 3= 82—_—)81[\82 =¢
(b) s e £ = one endpoint of s lies in E and the other endpoint lies in F.

Let 8 = \Uh.e s. Then y*(S) = 0.
Proof. Assume without loss of generality that b > a. For any (x, y) ¢ R®
let #({x, y)) = z. Forany y e Rlet [, = {{z, y) | z ¢ R}. Let

E, = {z ¢ E | 2z is the endpoint of some s ¢ £},
and observe that E, has linear measure 0. For any set A < R® we of course set
7(4d) = {zeR|{x,y)e A forsome yeR}.

We define a function A on = (E,) as follows. If z ¢ x(&,), then (z, a) ¢ E, ,
s0 we can choose a (unique) segment s ¢ £ with one endpoint at (z, a). If the
other endpoint of s is p, we set h(z) = #(p). Clearly h maps =(Z,) into «(F).
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Since the segments in £ cannot intersect each other, 2 must be an increasing
function.

Take any y, withb > y, > a. Letc = b — y,,d = y, — a. A simple computa-
tion shows that if ¢ € I,, M S, then

_cz+ dh(x)

0) ctd

for some z & w(I7,). So

cx + dh(x)
T(lyo m S) -g { c _|_ d

Now (d/c)h(x) is an increasing function mapping »(E,) into (d/c)x(F), so by
Lemma 10

Te w(Eo)}-

{x + g hx) | ze W(Eo)}

has measure 0. Hence

p _i P {x + gh(x) Te w(Eo)} = {c____x jj}(tl(x)

has measure 0, so u(r(l,, N\ S)) = 0. But u(x(l,, N\ S)) = 0 also when y, ¢ (a, b),
so p(w(l, M 8)) = 0 for every y. If we knew that S were measurable, the lemma,
would follow immediately from the IFubini theorems. But since we have, as
yet, no guaranty of the measurability of S, a more complicated argument is
necessary. At several stages in the argument the reader will find it useful to
draw diagrams to help him visualize the situation.

For any y, , y, ¢ R, let

Te w(Eo)}

Uy, y2) = (&, 9) |2,y e Ry <y < u).

A set of the form U(y, , y.) will be referred to as a horizontal open strip.
For each positive integer =, let £(n) denote the set of all segments s ¢ £
such that s has a point in common with {(z, b) | ¢ (—n, n)}. Let

so =1 Usanulet+ln-1).

8L (n) n,

Since [, and 7, have (plane) measure 0, and since

SCLuULYUUSm,
n=1
it is sufficient to show that each S(n) has measure 0.
Let n be a fixed positive integer. Set a* = a + 1/nand b* = b — 1/n. Take
any € > 0. Choose ¢, so that 2¢, + € < ¢/(b — a). Let y, be any member
of [a*, b*. For the time being, y, will be held fixed.
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For each s ¢ £, let p, be the endpoint of s on [, , let ¢, be the intersection
point of s with [,, , and let r, be the endpoint of s on [, .
Choose an open set G © R such that #(1,, N S(n)) € G and p(@) < €.
Say @ = \J, I, where I, = (a; , b;) and the I, ’s are pairwise disjoint. We
may assume that each I; contains a point of =(l,, M S(n)). For each j, let

C; = g‘l-b' {77(pn) l Se S(n)) W(qc) € Ii}’

d; = Lub. {x(p,) | se &), =(g.)el,},
¢ = glb. {x(r,) | se £n), =(q)el;},
d; = Lub. {x(r,) | se £n), =(q,) e l;}.

Note that ¢; < d; and ¢ < d} . Since the segments in £ cannot intersect each
other, it is easily seen that the intervals (c; , d;) are all pairwise disjoint. It
is also clear (from the definition of £(n)) that each (c;, d;) is a subset of (—n, n).
Hence, if we set «; = d; — ¢; , we have >ia; < 2n.

For each j, let s(j) be the line segment joining the two points (¢}, a), {c; , b),
and let ¢(j) be the line segment joining the two points (d} , a), (d; , b). Let 4;
be the closed subset of U(a, b) which is enclosed by the two line segments
s(j), t(j). Let H; denote the intersection of 4; with the horizontal open strip

V = U(max {a, Yo — 5;25} , min {b, Yo + i%})

Note that H; is measurable. Setting H = U, H;, it is clear from the definition
of the A;’s that

Sh)N\V C H.
Take any y ¢ B. We wish to show that

pEEH N 1)) < “5“_5_—5-

We can, of course, assume that

ye (max {a, Yo — 2—35} , min {b, Yo + Q%g})

An elementary computation, using the geometrical properties of H; , shows that
ur(H; N L) < (1 + lﬂ;y—d)u(m + o =0l
b — Yo b — yo
Therefore
pEEH NL) = 20 p@H; N L)

i

(1 4+ =2l) 2y + =2l 5,

IIA
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y — yo) Y — Yo
= (1+ /n u(@) + 1/n 2n
< (1 +n—2%>e,,+§j—;§2n2
€
b—a’
sou(r(H N 1)) < ¢/ (b — a) for every y.

We have shown that for each y, € [a*, b*] there exists a horizontal open strip
V (yo) containing l,, , and there exists a measurable set H(y,) & V(yo), such that

S(n) N\ V(ye) S H(yo)
and (for every y) w(H(y,) M 1,) is measurable and

< 2+ 6 <

€
W) N L) < 75—
The various open strips V(yo) (5o & [a*, b*]) clearly cover the compact set
{{0, y) | v  [a* b*]}. Choose a finite subcovering V (y), V(¥s), *++ , V(¥Um). Set

m

K= [H(ym) v mU (H(yo - U V(y»)] N U(a*, b%).

i=i+l

Obviously K is measurable, and for each y, #(K M ) is measurable and
w@E N 1)) < ¢/ — a). Moreover, S(n) C K. We have

b b*
nz(K)=j;_ u(qr(Kf\ly))dy§L bf_ady=(b*_a*)b_€_a<e.

Since e is arbitrary, this shows that
glb. {¢*(K) | K measurable, S(n) C K} = 0.

Therefore S(n) has measure 0.

Lemma 12. For every ¢ > 0 there exists a strictly increasing function h on
R such that h(R) has measure 0, and for every z, |t — h(z)| < e

Proof. Tor cach (not necessarily positive) integer n, let I, = [ne, (n + 1)€].
Then \U, I, = R. There exists a strictly increasing function f : [0, 1] — [0, 1]
such that u(f([0, 1])) = 0. For example, such a function may be defined as
follows. Any number in [0, 1) may be written in the form

.010503 *** @, + -+, (binary decimal),
where the decimal does not end in an infinite unbroken string of 1’s. Set
flaaza5 -+ @, +++) = bbb +++ b, -+, (ternary decimal),

where b, = 0if a; = O and b; = 2 if a; = 1. Set f(1) = 1. f maps [0, 1] into
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the Cantor set, so u(f([0, 1])) = 0. It is easily shown that f is strictly increasing.
For each n, it is easy to obtain from f a function f, : I, — I, such that f,
is strictly increasing and u(f,(I,)) = 0. Set

h(x) = f.(x) for =z (ne, (n 4 1)e.
There is no difficulty in proving that h has the desired properties.

Theorem 6. Let ¢ be an arbitrary function on C° = {{(z, 0) | z ¢ R}. Then
there exists a function f on D° = {{(x, y) | y > 0} such that {(z) = 0 almost every-
where and ¢ is a boundary function for f.

Proof. For each positive integer n let h, be a strictly increasing function
on R such that p(h.(R)) = 0, and for every z, |t — h,(z)] = 1/n. Let

g, = {<hn(x), }L> z sR}-
= {<x,%> xeR} ,

and F, has linear measure 0. For each n, z let s,(z) be the line segment joining
(h,(x), 1/n) and {h,.,(x), 1/(n + 1)). Since

ho(z) > k(2") = 2 > 2" = Bt () > Rpea(2),

E, is a subset of

we find that z # z’ implies s,(z) N s,(z’) = ¢. Since each s,(r) has one endpoint
in E, and the other in E,,, , Lemama 11 shows that for each n

w(Us. (@) = 0.

zeR
Hence

;f(o Usn(x)) = 0.

n=1 zzR

Set
1) = o({z, 0)), if z ¢ s,(x) for some n,
f(z) =0, if 2 is not in any s,(z).

f(z) = 0 almost everywhere. Let

1) = (@ 0} U Us@.

Since the endpoints of s,(z) are at (h,(z), 1/n) and (h,..(z), 1/(n 4+ 1)), and
since (h,(x), 1/n) — (x, 0) as n — =, it is clear that y(z) is an arc at (z, 0).
Obviously

lim f@) = ¢z, 0).

z—(z,0)
zey ()
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This proves the theorem.

Corollary. There exists a measurable function in D° having a nonmeasurable
boundary function.

6. Concluding remarks. Our theorem on boundary functions for continuous
functions could have been proved by a small modification of the argument
in Section 4, but the proof in Section 3 is shorter and neater.

The reader may wonder whether Theorem 4 holds true for functions taking
values on the Riemann sphere as well as for real-valued functions. The theorem
does, in fact, remain true in the sphere-valued case. If we regard the Riemann
sphere I as a subset of R® and apply Theorem 4 to each component of f and ¢,
we find that ¢ is of Baire class @ 4+ 1 with R® as the universal range space.
It is then easy to show by means of Satz 2 in Banach’s paper [3] that ¢ is of
Baire class o + 1 with = regarded as the universal range space. A similar pro-
cedure shows that Theorem 5 also remains true for functions taking values
on the Riemann sphere.

The results of Sections 2, 3 and 4 cannot be extended to three dimensions—at
least not in the most obvious way. We can show this as follows. Let K be an
open cube in R® and let F be one face of K. If f is defined in K, then we say
¢ (defined on F) is a boundary function for f provided that for each x ¢ F there
exists an arc v with one endpoint at z such that v — {#} € K and

lim f() = o(z).

vey
Lemma 13. Suppose that every point of F is an ambiguous point of the func-
tion f : K — R®. Then f has a nonmeasurable boundary function.

Proof. Let E be a nonmeasurable subset of F. Since each point of F is an
ambiguous point we can choose, for each z ¢ F, two distinct points ¢, (x), ¢»(x) ¢ B?
such that there exist arcs v, at x with

lim f6) = ¢:(@), G =1,2).

vz
vEY

Let
o@) = oux), if xekE,
o) = @u(x), if 2eF — E.
Then
@) — () =0, if zel,
o@) — eu(x) £ 0, if zeF — E.

Therefore (¢ — ¢1)7'({0}) = E, s0 ¢ — ¢, is not a measurable function. Hence
either ¢ or ¢, is a nonmeasurable function. Since ¢ and ¢, are both boundary
functions for f, the lemma, is proved.
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P. T. Church [4] has constructed an example of a homeomorphism f from
K onto K such that every point of F is an ambiguous point for f. By Lemma 13,
f has a nonmeasurable boundary function ¢. Theorem 1 is therefore false in
three dimensions. Write f and ¢ in terms of their components;say f = (f,, f., fa)
and ¢ = (¢, ¢2, ¢s). Since ¢ is nonmeasurable, one of its components, say ¢, ,
is nonmeasurable. But ¢; is a boundary function for the continuous real-valued
function f; , so Theorem 2 and Theorem 4 must be false in three dimensions.
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